Skip to main content

Active Transfer Learning for 3D Hippocampus Segmentation

  • Conference paper
  • First Online:
Medical Image Learning with Limited and Noisy Data (MILLanD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14307))

Included in the following conference series:

  • 293 Accesses

Abstract

Insufficient data is always a big challenge for medical imaging that is limited by the expensive labeling cost, time-consuming and intensive labor. Active learning aims to reduce the annotation effort by training a model on actively selected samples, most of them adopt uncertainty measures as instance selection criteria. However, uncertainty strategies underperform in most active learning studies. In addition, inaccurate selections worse than random sampling in initial stage referred to as “cold start” problem is also a huge challenge for active learning. Domain adaptation aims at alleviating the cold start problem and also reducing the annotation effort by adapting the model from a pre-trained model trained on another domain. Our work focuses on whether active learning can benefit from domain adaptation and the performance of uncertainty strategy compared to random selection. We studied 3D hippocampus images segmentation based on 3D UX-Net and four MRI datasets Hammers, HarP, LPBA40, and OASIS. Our experiments reveal that active learning with domain adaptation is more efficient and robust than without domain adaptation at a low labeling budget. The performance gap between them diminishes as we approach to that half of the dataset is labeled. In addition, entropy sampling also converges faster than random sampling, with slightly better performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bengar, J.Z., van de Weijer, J., Twardowski, B., Raducanu, B.: Reducing label effort: self-supervised meets active learning (2021)

    Google Scholar 

  2. Boccardi, M., et al.: Training labels for hippocampal segmentation based on the EADC-ADNI harmonized hippocampal protocol. Alzheimer’s Dementia 11(2), 175–183 (2015). https://doi.org/10.1016/j.jalz.2014.12.002

    Article  Google Scholar 

  3. Carmo, D., Silva, B., Yasuda, C., Rittner, L., Lotufo, R.: Hippocampus segmentation on epilepsy and Alzheimer’s disease studies with multiple convolutional neural networks. Heliyon 7(2), e06226 (2021). https://doi.org/10.1016/j.heliyon.2021.e06226

    Article  Google Scholar 

  4. Casanova, A., Pinheiro, P.O., Rostamzadeh, N., Pal, C.J.: Reinforced active learning for image segmentation (2020)

    Google Scholar 

  5. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018). https://doi.org/10.1109/TPAMI.2017.2699184

    Article  Google Scholar 

  6. Chen, L., et al.: Making your first choice: to address cold start problem in medical active learning. In: Medical Imaging with Deep Learning (2023). https://openreview.net/forum?id=5iSBMWm3ln

  7. Chen, L., Fu, Y., You, S., Liu, H.: Hybrid supervised instance segmentation by learning label noise suppression. Neurocomputing 496, 131–146 (2022). https://doi.org/10.1016/j.neucom.2022.05.026

    Article  Google Scholar 

  8. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945). https://www.jstor.org/stable/1932409

  9. Dubois, B., Hampel, H., Feldman, H.H., Carrillo, M.C., Cummings, J., Jack, C.R., Jr.: Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria. Alzheimers Dement. 12(3), 292–323 (2016)

    Article  Google Scholar 

  10. Faillenot, I., Heckemann, R.A., Frot, M., Hammers, A.: Macroanatomy and 3D probabilistic atlas of the human insula. Neuroimage 150, 88–98 (2017). https://doi.org/10.1016/j.neuroimage.2017.01.073

    Article  Google Scholar 

  11. Farahani, A., Voghoei, S., Rasheed, K., Arabnia, H.R.: A brief review of domain adaptation (2020)

    Google Scholar 

  12. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  13. Ji, Y., et al.: AMOS: a large-scale abdominal multi-organ benchmark for versatile medical image segmentation. arXiv preprint arXiv:2206.08023 (2022)

  14. Konyushkova, K., Sznitman, R., Fua, P.: Learning active learning from data (2017)

    Google Scholar 

  15. Landman, B.A., Warfield, S.K.: MICCAI 2012: grand challenge and workshop on multi-atlas labeling. In: International Conference on MICCAI (2012)

    Google Scholar 

  16. Lee, H.H., Bao, S., Huo, Y., Landman, B.A.: 3D UX-Net: a large kernel volumetric convnet modernizing hierarchical transformer for medical image segmentation (2022). https://doi.org/10.48550/ARXIV.2209.15076

  17. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization (2019)

    Google Scholar 

  18. Ma, J., et al.: Fast and low-GPU-memory abdomen CT organ segmentation: the flare challenge. Med. Image Anal. 82, 102616 (2022)

    Article  Google Scholar 

  19. Makili, L.E., Sánchez, J.A.V., Dormido-Canto, S.: Active learning using conformal predictors: application to image classification. Fusion Sci. Technol. 62(2), 347–355 (2012). https://doi.org/10.13182/FST12-A14626

    Article  Google Scholar 

  20. Martin, J., Radzyner, H., Leonard, M.: Neuroanatomy: Text and Atlas. Ovid ebook collection, McGraw-Hill Companies, Incorporated (2003). https://books.google.dk/books?id=OUC4igr3O4sC

  21. Mehdipour Ghazi, M., Nielsen, M.: FAST-AID brain: fast and accurate segmentation tool using artificial intelligence developed for brain. arXiv preprint (2022). https://doi.org/10.48550/ARXIV.2208.14360

  22. Nath, V., Yang, D., Landman, B.A., Xu, D., Roth, H.R.: Diminishing uncertainty within the training pool: active learning for medical image segmentation. IEEE Trans. Med. Imaging 40(10), 2534–2547 (2021). https://doi.org/10.1109/tmi.2020.3048055

    Article  Google Scholar 

  23. Owen, A.B.: Monte Carlo theory, methods and examples (2013)

    Google Scholar 

  24. Paszke, A., Gross, S., Massa, F., Bai, J., Chintala, S.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035. Curran Associates, Inc. (2019). https://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  25. Patel, K., Kovalyov, A., Panahi, I.: UX-Net: filter-and-process-based improved u-net for real-time time-domain audio separation (2022). https://doi.org/10.48550/ARXIV.2210.15822

  26. Payette, K., de Dumast, P., Kebiri, H., Ezhov, I., Bach Cuadra, M., Jakab, A.: An automatic multi-tissue human fetal brain segmentation benchmark using the fetal tissue annotation dataset. Sci. Data 8(1), 167 (2021). https://doi.org/10.1038/s41597-021-00946-3

    Article  Google Scholar 

  27. Postel, C., et al.: Variations in response to trauma and hippocampal subfield changes. Neurobiol. Stress 15, 100346 (2021). https://doi.org/10.1016/j.ynstr.2021.100346

    Article  Google Scholar 

  28. Raj, A., Bach, F.: Convergence of uncertainty sampling for active learning (2021). https://doi.org/10.48550/ARXIV.2110.15784

  29. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation (2015). https://doi.org/10.48550/ARXIV.1505.04597

  30. Scheffer, T., Decomain, C., Wrobel, S.: Active hidden Markov models for information extraction. In: Hoffmann, F., Hand, D.J., Adams, N., Fisher, D., Guimaraes, G. (eds.) IDA 2001. LNCS, vol. 2189, pp. 309–318. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44816-0_31

    Chapter  Google Scholar 

  31. Shattuck, D., et al.: Construction of a 3D probabilistic atlas of human cortical structures. NeuroImage 39, 1064–1080 (2008). https://doi.org/10.1016/j.neuroimage.2007.09.031

    Article  Google Scholar 

  32. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation (2016). https://doi.org/10.48550/ARXIV.1605.06211

  33. Sugiyama, M., Kawanabe, M.: Active learning with model selection, pp. 215–224 (2012)

    Google Scholar 

  34. Wu, D.: Pool-based sequential active learning for regression (2018)

    Google Scholar 

  35. Wu, T.H., et al.: D2ADA: dynamic density-aware active domain adaptation for semantic segmentation (2022)

    Google Scholar 

  36. Xie, B., Yuan, L., Li, S., Liu, C.H., Cheng, X., Wang, G.: Active learning for domain adaptation: an energy-based approach. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 8 (2022)

    Google Scholar 

Download references

Acknowledgements

This project has received funding from Pioneer Centre for AI, Danish National Research Foundation, grant number P1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mads Nielsen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 102 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, J., Kang, Z., Llambias, S.N., Ghazi, M.M., Nielsen, M. (2023). Active Transfer Learning for 3D Hippocampus Segmentation. In: Xue, Z., et al. Medical Image Learning with Limited and Noisy Data. MILLanD 2023. Lecture Notes in Computer Science, vol 14307. Springer, Cham. https://doi.org/10.1007/978-3-031-44917-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44917-8_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47196-4

  • Online ISBN: 978-3-031-44917-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics