Skip to main content

Using Training Samples as Transitive Information Bridges in Predicted 4D MRI

  • Conference paper
  • First Online:
Medical Image Learning with Limited and Noisy Data (MILLanD 2023)

Abstract

The lack of real-time techniques for monitoring respiratory motion impairs the development of guidance systems for image-guided interventions. Recent works show that U-Net based real-time 4D MRI prediction methods are promising, but prone to bad image quality when small training data sets and inputs with multiple MR contrast are used. To overcome this problem, we propose a more efficient use of the spare training data and re-utilize 2D training samples as a secondary input for construction of transitive information bridges between the navigator slice primary input and the data slice prediction. We thus remove the need for a separate 3D breath-hold MRI with different MR contrast as the secondary input. Results show that our novel construction leads to improved prediction quality with very sparse training data, with a significant decrease in root mean squared error (RMSE) from 0.3 to 0.27 (p\(<2.2e^{-16}\), d=0.19). Additionally, removing 3D imaging reduces prior acquisition time from 3 to 2 min.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cai, J., Chang, Z., Wang, Z., Paul Segars, W., Yin, F.F.: Four-dimensional magnetic resonance imaging (4D-MRI) using image-based respiratory surrogate: a feasibility study. Med. Phys. 38(12), 6384–6394 (2011)

    Article  Google Scholar 

  2. Gulamhussene, G., Joeres, F., Rak, M., Lübeck, C., Pech, M., Hansen, C.: 2D MRI liver slices with navigator frames. a test data set for image based 4D MRI reconstruction (2019). https://doi.org/10.24352/UB.OVGU-2019-093

  3. Gulamhussene, G., Joeres, F., Rak, M., Pech, M., Hansen, C.: 4D MRI: robust sorting of free breathing MRI slices for use in interventional settings. PLoS ONE 15(6), e0235175 (2020)

    Article  Google Scholar 

  4. Gulamhussene, G., et al.: Predicting 4D liver MRI for MR-guided interventions. Comput. Med. Imaging Graph., 102122 (2022). https://doi.org/10.1016/j.compmedimag.2022.102122, https://www.sciencedirect.com/science/article/pii/S0895611122000921

  5. Gulamhussene, G., et al.: 2D MRI liver slices with navigator frames. a test data set for image based 4D MRI reconstruction. Part II (2021). https://doi.org/10.24352/UB.OVGU-2021-071

  6. Gulamhussene, G., et al.: Transfer-learning is a key ingredient to fast deep learning-based 4D liver MRI reconstruction (2022)

    Google Scholar 

  7. Han, F., Zhou, Z., Cao, M., Yang, Y., Sheng, K., Hu, P.: Respiratory motion-resolved, self-gated 4D-MRI using rotating cartesian k-space (ROCK). Med. Phys. 44(4), 1359–1368 (2017)

    Article  Google Scholar 

  8. Hu, Y., Caruthers, S.D., Low, D.A., Parikh, P.J., Mutic, S.: Respiratory amplitude guided 4-dimensional magnetic resonance imaging. Int. J. Radiat. Oncol.* Biol.* Phys. 86(1), 198–204 (2013)

    Google Scholar 

  9. van de Lindt, T., et al.: A self-sorting coronal 4D-MRI method for daily image guidance of liver lesions on an MR-LINAC. Int. J. Radiat. Oncol.* Biol.* Phys. 102(4), 875–884 (2018)

    Google Scholar 

  10. Paganelli, C., Summers, P., Bellomi, M., Baroni, G., Riboldi, M.: Liver 4DMRI: a retrospective image-based sorting method. Med. Phys. 42(8), 4814–4821 (2015)

    Article  Google Scholar 

  11. von Siebenthal, M., Szekely, G., Gamper, U., Boesiger, P., Lomax, A., Cattin, P.: 4D MR imaging of respiratory organ motion and its variability. Phys. Med. Biol. 52(6), 1547 (2007)

    Article  Google Scholar 

  12. Tanner, C., Samei, G., Székely, G.: Improved reconstruction of 4D-MR images by motion predictions. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014: 17th International Conference, Boston, MA, USA, September 14-18, 2014, Proceedings, Part I, pp. 146–153. Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-10404-1_19

    Chapter  Google Scholar 

  13. Tryggestad, E., et al.: Respiration-based sorting of dynamic MRI to derive representative 4D-MRI for radiotherapy planning. Med. Phys. 40(5), 051909 (2013)

    Article  Google Scholar 

  14. Yang, Z., Ren, L., Yin, F.F., Liang, X., Cai, J.: Motion robust 4D-MRI sorting based on anatomic feature matching: a digital phantom simulation study. Radiat. Med. Prot. 1(1), 41–47 (2020)

    Article  Google Scholar 

  15. Yuan, J., Wong, O.L., Zhou, Y., Chueng, K.Y., Yu, S.K.: A fast volumetric 4D-MRI with sub-second frame rate for abdominal motion monitoring and characterization in MRI-guided radiotherapy. Quant. Imaging Med. Surg. 9(7), 1303 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Federal Ministry for Economics and Energy of Germany (project number 16KN093921). This work was carried out as part of the STIMULATE research campus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gino Gulamhussene .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gulamhussene, G., Bashkanov, O., Omari, J., Pech, M., Hansen, C., Rak, M. (2023). Using Training Samples as Transitive Information Bridges in Predicted 4D MRI. In: Xue, Z., et al. Medical Image Learning with Limited and Noisy Data. MILLanD 2023. Lecture Notes in Computer Science, vol 14307. Springer, Cham. https://doi.org/10.1007/978-3-031-44917-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44917-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47196-4

  • Online ISBN: 978-3-031-44917-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics