Skip to main content

Investigating Transformer Encoding Techniques to Improve Data-Driven Volume-to-Surface Liver Registration for Image-Guided Navigation

  • Conference paper
  • First Online:
Data Engineering in Medical Imaging (DEMI 2023)

Abstract

Due to limited direct organ visualization, minimally invasive interventions rely extensively on medical imaging and image guidance to ensure accurate surgical instrument navigation and target tissue manipulation. In the context of laparoscopic liver interventions, intra-operative video imaging only provides a limited field-of-view of the liver surface, with no information of any internal liver lesions identified during diagnosis using pre-procedural imaging. Hence, to enhance intra-procedural visualization and navigation, the registration of pre-procedural, diagnostic images and anatomical models featuring target tissues to be accessed or manipulated during surgery entails a sufficient accurate registration of the pre-procedural data into the intra-operative setting. Prior work has demonstrated the feasibility of neural network-based solutions for nonrigid volume-to-surface liver registration. However, view occlusion, lack of meaningful feature landmarks, and liver deformation between the pre- and intra-operative settings all contribute to the difficulty of this registration task. In this work, we leverage some of the state-of-the-art deep learning frameworks to implement and test various network architecture modifications toward improving the accuracy and robustness of volume-to-surface liver registration. Specifically, we focus on the adaptation of a transformer-based segmentation network for the task of better predicting the optimal displacement field for nonrigid registration. Our results suggest that one particular transformer-based network architecture—UTNet—led to significant improvements over baseline performance, yielding a mean displacement error on the order of 4 mm across a variety of datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acidi, B., Ghallab, M., Cotin, S., Vibert, E., Golse, N.: Augmented reality in liver surgery. J. Visceral Surg. 160(2), 118–126 (2023)

    Article  Google Scholar 

  2. Antonelli, M., et al.: The medical segmentation decathlon. Nat. Commun. 13(1), 4128 (2022)

    Article  Google Scholar 

  3. Attaiki, S., Pai, G., Ovsjanikov, M.: DPFM: deep partial functional maps. In: 2021 International Conference on 3D Vision (3DV), pp. 175–185 (2021)

    Google Scholar 

  4. Barcali, E., Iadanza, E., Manetti, L., Francia, P., Nardi, C., Bocchi, L.: Augmented reality in surgery: a scoping review. Appl. Sci. 12(14), 6890 (2022)

    Article  Google Scholar 

  5. Barequet, G., Sharir, M.: Partial surface and volume matching in three dimensions. IEEE Trans. Pattern Anal. Mach. Intell. 19(9), 929–948 (1997)

    Article  Google Scholar 

  6. Blender Online Community. Blender - a 3D modelling and rendering package. Blender Foundation, Blender Institute, Amsterdam

    Google Scholar 

  7. Corona-Figueroa, A., Frawley, J., Bond-Taylor, S., Bethapudi, S., Shum, H.P.H., Willcocks, C.G.: MedNeRF: medical neural radiance fields for reconstructing 3D-aware CT-projections from a single X-ray (2022)

    Google Scholar 

  8. Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale (2021)

    Google Scholar 

  9. Elhawary, H., et al.: Multimodality Non-rigid image registration for planning, targeting and monitoring during CT-guided percutaneous liver tumor cryoablation. Acad. Radiol. 17(11), 1334–1344 (2010)

    Article  Google Scholar 

  10. Galle, P.R., et al.: EASL clinical practice guidelines: management of hepatocellular carcinoma. J. Hepatol. 69(1), 182–236 (2018)

    Article  MathSciNet  Google Scholar 

  11. Gao, Y., Zhou, M., Metaxas, D.: UTNet: a hybrid transformer architecture for medical image segmentation (2021)

    Google Scholar 

  12. Gelfand, N., Mitra, N.J., Guibas, L.J., Pottmann, H.: Robust global registration (2005)

    Google Scholar 

  13. Geuzaine, C., Remacle, J.F.: Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79, 1309–1331 (2009)

    Article  MATH  Google Scholar 

  14. Hontani, H., Watanabe, W.: Point-based non-rigid surface registration with accuracy estimation. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 446–452 (2010)

    Google Scholar 

  15. Li, H., Chen, H., Jing, W., Li, Y., Zheng, R.: 3D ultrasound spine imaging with application of neural radiance field method. In: 2021 IEEE International Ultrasonics Symposium (IUS), pp. 1–4 (2021)

    Google Scholar 

  16. Maki, H., Hasegawa, K.: Advances in the surgical treatment of liver cancer. BioSci. Trends 16(3), 178–188 (2022)

    Article  Google Scholar 

  17. Malinen, M., Råback, P.: Elmer finite element solver for multiphysics and multiscale problems. Multiscale Model. Methods Appl. Mater. Sci. 19, 101–113 (2013)

    Google Scholar 

  18. Mendizabal, A., Márquez-Neila, P., Cotin, S.: Simulation of hyperelastic materials in real-time using deep learning. Med. Image Anal. 59, 101569 (2020)

    Article  Google Scholar 

  19. Mendizabal, Andrea, Tagliabue, Eleonora, Brunet, Jean-Nicolas., Dall’Alba, Diego, Fiorini, Paolo, Cotin, Stéphane.: Physics-based deep neural network for real-time lesion tracking in ultrasound-guided breast biopsy. In: Miller, Karol, Wittek, Adam, Joldes, Grand, Nash, Martyn P.., Nielsen, Poul M. F.. (eds.) MICCAI 2018-2019, pp. 33–45. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-42428-2_4

    Chapter  MATH  Google Scholar 

  20. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis (2020)

    Google Scholar 

  21. Nakamura, K., et al.: The hepatic left lateral segment inverting method offering a wider operative field of view during laparoscopic proximal gastrectomy. J. Gastrointest. Surg. 24(10), 2395–2403 (2020)

    Article  Google Scholar 

  22. Pfeiffer, M., et al.: Non-rigid volume to surface registration using a data-driven biomechanical model (2020)

    Google Scholar 

  23. Rochester Institute of Technology. Research Computing Services (2019)

    Google Scholar 

  24. Ronneberger, Olaf, Fischer, Philipp, Brox, Thomas: U-net: convolutional networks for biomedical image segmentation. In: Navab, Nassir, Hornegger, Joachim, Wells, William M.., Frangi, Alejandro F.. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  25. Sivagami, S., Chitra, P., Kailash, G.S.R., Muralidharan, S.: UNet architecture based dental panoramic image segmentation. In: 2020 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), pp. 187–191 (2020)

    Google Scholar 

  26. Suwelack, S., et al.: Physics-based shape matching for intraoperative image guidance. Med. Phys. 41(11), 111901 (2014)

    Article  Google Scholar 

  27. Vaswani, A., et al.: Attention is all you need (2017)

    Google Scholar 

  28. Xiao, X., Guo, W., Chen, R., Hui, Y., Wang, J., Zhao, H.: A swin transformer-based encoding booster integrated in U-shaped network for building extraction. Remote Sens. 14(11), 2611 (2022)

    Article  Google Scholar 

  29. Yang, X., Kwitt, R., Niethammer, M.: Fast predictive image registration (2016)

    Google Scholar 

  30. Zeng, Y., Wang, C., Wang, Y., Gu, X., Samaras, D., Paragios, N.: Dense non-rigid surface registration using high-order graph matching. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 382–389 (2010)

    Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by the National Institute of General Medical Sciences Award No. R35GM128877 of the National Institutes of Health, the Office of Advanced Cyber Infrastructure Award No. 1808530 of the National Science Foundation, and the Division Of Chemistry, Bioengineering, Environmental, and Transport Systems Award No. 2245152 of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Young .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Young, M., Yang, Z., Simon, R., Linte, C.A. (2023). Investigating Transformer Encoding Techniques to Improve Data-Driven Volume-to-Surface Liver Registration for Image-Guided Navigation. In: Bhattarai, B., et al. Data Engineering in Medical Imaging. DEMI 2023. Lecture Notes in Computer Science, vol 14314. Springer, Cham. https://doi.org/10.1007/978-3-031-44992-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44992-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44991-8

  • Online ISBN: 978-3-031-44992-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics