Skip to main content

Contrast Learning Based Robust Framework for Weakly Supervised Medical Image Segmentation with Coarse Bounding Box Annotations

  • Conference paper
  • First Online:
Computational Mathematics Modeling in Cancer Analysis (CMMCA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14243))

  • 320 Accesses

Abstract

The shortage of data due to high annotation costs has limited the development of supervised medical image segmentation methods that rely on tight pixel-level annotations. Recently, weakly supervised methods based on multiple instance learning have been proposed to reduce the annotation cost by using bounding box annotations and achieve competitive performance. However, most existing methods require accurate bounding box annotations to generate positive and negative sample bags, which is difficult to realize due to the inevitable errors associated with manually annotated bounding boxes. In this study, we propose a robust framework based on contrast learning for weakly supervised medical image segmentation. Specifically, our method involves a Fine-grained Semantic Representation Module (FSRM), which is used to distinguish foreground and background pixels inside a coarse bounding box. Positive and negative sample bags are generated for multiple instance learning based on the obtained foreground results instead of bounding box constraints. Therefore, our proposed method can ensure the performance under coarse labeling by automatically extracting the boundaries of foreground and background. Our method achieves state-of-the-art results on two publicly available datasets, and extensive experiments validate the robustness of our method under noisy annotations. The source code will be available at https://github.com/ta1ly/wsis-contrastlearning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, J., et al.: TransUNet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  2. Hatamizadeh, A., et al.: UNETR: transformers for 3D medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 574–584 (2022)

    Google Scholar 

  3. Hsu, C.C., Hsu, K.J., Tsai, C.C., Lin, Y.Y., Chuang, Y.Y.: Weakly supervised instance segmentation using the bounding box tightness prior. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  4. Kervadec, H., Dolz, J., Wang, S., Granger, E., Ayed, I.B.: Bounding boxes for weakly supervised segmentation: global constraints get close to full supervision. In: Medical Imaging with Deep Learning, pp. 365–381. PMLR (2020)

    Google Scholar 

  5. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  6. Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with gaussian edge potentials. In: Advances in neural information processing systems, vol. 24 (2011)

    Google Scholar 

  7. Kulharia, V., Chandra, S., Agrawal, A., Torr, P., Tyagi, A.: Box2Seg: attention weighted loss and discriminative feature learning for weakly supervised segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12372, pp. 290–308. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58583-9_18

    Chapter  Google Scholar 

  8. Li, Z.W., Xuan, S.B., He, X.D., Wang, L.: Global weighted average pooling network with multilevel feature fusion for weakly supervised brain tumor segmentation. IET Image Proc. 17(2), 418–427 (2023)

    Article  Google Scholar 

  9. Liew, S.L., et al.: A large, curated, open-source stroke neuroimaging dataset to improve lesion segmentation algorithms. Sci. data 9(1), 320 (2022)

    Article  Google Scholar 

  10. Litjens, G., et al.: Evaluation of prostate segmentation algorithms for MRI: the promise12 challenge. Med. Image Anal. 18(2), 359–373 (2014)

    Article  Google Scholar 

  11. Liu, X., et al.: Weakly supervised segmentation of COVID19 infection with scribble annotation on CT images. Pattern Recogn. 122, 108341 (2022)

    Article  Google Scholar 

  12. Mahani, G.K., et al.: Bounding box based weakly supervised deep convolutional neural network for medical image segmentation using an uncertainty guided and spatially constrained loss. In: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), pp. 1–5. IEEE (2022)

    Google Scholar 

  13. Meng, Q., Liao, L., Satoh, S.: Weakly-supervised learning with complementary heatmap for retinal disease detection. IEEE Trans. Med. Imaging 41(8), 2067–2078 (2022)

    Article  Google Scholar 

  14. Papandreou, G., Chen, L.C., Murphy, K.P., Yuille, A.L.: Weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1742–1750 (2015)

    Google Scholar 

  15. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  16. Patel, G., Dolz, J.: Weakly supervised segmentation with cross-modality equivariant constraints. Med. Image Anal. 77, 102374 (2022)

    Article  Google Scholar 

  17. Peng, J., Kervadec, H., Dolz, J., Ayed, I.B., Pedersoli, M., Desrosiers, C.: Discretely-constrained deep network for weakly supervised segmentation. Neural Netw. 130, 297–308 (2020)

    Article  Google Scholar 

  18. Rajchl, M., et al.: DeepCut: object segmentation from bounding box annotations using convolutional neural networks. IEEE Trans. Med. Imaging 36(2), 674–683 (2016)

    Article  Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Rother, C., Kolmogorov, V., Blake, A.: “GrabCut’’ interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. (TOG) 23(3), 309–314 (2004)

    Article  Google Scholar 

  21. Tajbakhsh, N., Jeyaseelan, L., Li, Q., Chiang, J.N., Wu, Z., Ding, X.: Embracing imperfect datasets: a review of deep learning solutions for medical image segmentation. Med. Image Anal. 63, 101693 (2020)

    Article  Google Scholar 

  22. Wang, J., Xia, B.: Bounding box tightness prior for weakly supervised image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 526–536. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_49

    Chapter  Google Scholar 

  23. Wang, J., Xia, B.: Polar transformation based multiple instance learning assisting weakly supervised image segmentation with loose bounding box annotations. arXiv preprint arXiv:2203.06000 (2022)

  24. Wei, J., Hu, Y., Li, G., Cui, S., Kevin Zhou, S., Li, Z.: BoxPolyp: boost generalized polyp segmentation using extra coarse bounding box annotations. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol. 13433, pp. 67–77. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_7

  25. Xie, J., Xiang, J., Chen, J., Hou, X., Zhao, X., Shen, L.: C2AM: contrastive learning of class-agnostic activation map for weakly supervised object localization and semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 989–998 (2022)

    Google Scholar 

  26. Zhang, Z., Liu, Q., Wang, Y.: Road extraction by deep residual U-Net. IEEE Geosci. Remote Sens. Lett. 15(5), 749–753 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong An .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, Z., Shi, J., Zhao, M., Wang, Z., Qiao, L., An, H. (2023). Contrast Learning Based Robust Framework for Weakly Supervised Medical Image Segmentation with Coarse Bounding Box Annotations. In: Qin, W., Zaki, N., Zhang, F., Wu, J., Yang, F., Li, C. (eds) Computational Mathematics Modeling in Cancer Analysis. CMMCA 2023. Lecture Notes in Computer Science, vol 14243. Springer, Cham. https://doi.org/10.1007/978-3-031-45087-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45087-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45086-0

  • Online ISBN: 978-3-031-45087-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics