
Managing Write Access without Token Fees in
Leaderless DAG-based Ledgers

Darcy Camargo, Luigi Vigneri, and Andrew Cullen

IOTA Foundation
Pappelallee 78/79, 10437 Berlin, Germany

name.surname@iota.org

Abstract. A significant portion of research on distributed ledgers has
focused on circumventing the limitations of leader-based blockchains
mainly in terms of scalability, decentralization and power consumption.
Leaderless architectures based on directed acyclic graphs (DAGs) avoid
many of these limitations altogether, but their increased flexibility and
performance comes at the cost of increased design complexity, so their
potential has remained largely unexplored. Management of write access
to these ledgers presents a major challenge because ledger updates may
be made in parallel, hence transactions cannot simply be serialised and
prioritised according to token fees paid to validators. In this work, we
propose an access control scheme for leaderless DAG-based ledgers which
is based on consuming credits rather than paying fees in the base token.
We outline a general model for this new approach and provide some
simulation results showing promising performance boosts.

Keywords: Leaderless distributed ledgers · Dual-token economy · Priority-
based write access · DAG-based ledgers.

1 Introduction

Blockchains have sparked a revolution in the way information is shared in a trust-
less way. Over the latest decade, research has focused on addressing blockchain’s
intrinsic shortcomings in search of improved scalability, a more sustainable way
of reaching consensus and a fairer distribution of wealth, with the introduction of
“smart transactions” [1], new governance solutions and tackling privacy-related
issues, among others. One of the main criticisms, though, is still related to per-
formance: Bitcoin and Ethereum, the two most relevant projects by market cap
as of 2022, are only able to process a few transactions per second [2], creating
competition between users to obtain writing permission to the blockchain. Such a
limited writing space is shared through auction-like mechanisms to discriminate
which transactions deserve to be added to the ledger. As transactions compete
for the limited writing available, often this system leads to large fees [3].

1.1 Related work

Various attempts have tried to make DLT projects more scalable, notably light-
ning networks, sharding and Layer 2 solutions [4]. Furthermore, more recently,

ar
X

iv
:2

30
7.

08
62

7v
1

 [
cs

.N
I]

 1
7

Ju
l 2

02
3

2 D. Camargo et al.

there has been an increasing interest in directed acyclic graph (DAG) ledgers,
which generalize the original chain structure introduced by the blockchain: in
fact, when blocks are created at a high rate compared to their propagation
time, many competing (or even conflicting) blocks are created leading to fre-
quent bifurcations; DAG-based approaches allow to include blocks not only to
the main chain, but also to these bifurcations using additional references [5][6].
Since transactions can be written and processed in a parallel way, i.e., no total
ordering artificially enforcing a pause between subsequent blocks, DAG-based
ledgers promise improved throughput and scalability. A number of DAG-based
distributed ledger techologies (DLTs) already provide strong performance for
consensus and communications layers, such as Honeybadger [7], Hashgraph [8],
Aleph [9] and more recently Narwhal [10]. However, the DLTs mentioned still
involve leader-based block creation which leaves users exposed to censorship and
value extraction by these powerful leaders.

Standard blockchains and leader-based DLTs are built on the dichotomy be-
tween the user that wants to issue transactions or other state-changing data
and a block issuer (leader) responsible for creating the blocks that will actually
include these data in the ledger. This standard model couples the consensus and
access elements of the protocol in the block issuance, creating competition among
block issuers to provide ledger access as a service to the base users. In order to
have enough incentives for block issuers to invest in this competition, in these
protocols users propose fees for their data and the block issuers select which
data to include to maximise their profits. Such tokenomics schemes are known
for being effective but carry a variety of drawbacks: exclusion of low-scale oper-
ations, value extraction from users, fee-bidding wars [3], market manipulation,
unpredictable pricing and uncertainty of inclusion, to name but a few [11].

In order to fulfill the demand of DLT applications that require low to no token
fee models, some DLT protocols have attempted to develop zero-fee systems to
varied degrees of success [12][13][14][6]. Among these projects, the DAG-based
protocols have shown more promises due to the option of decoupling access and
consensus rights, like in Prism [14] or in the IOTA Tangle [6]. We adopt such a
DAG-based leaderless model in this work where users are block issuers. We use
this as a basis for developing a novel approach to managing ledger write access
that does not require token fees and overcomes many of the negative outcomes
of traditional blockchain models.

1.2 Contributions

The main contribution of this work is a novel scheme for managing write access to
leaderless DAG-based DLTs through Access Credit, a quantity that is passively
generated based on tokens held and contributions to the protocol (e.g., being
a validator). This Access Credit can be consumed to create new blocks, buy
name services, interact with smart contracts or, in general, use a portion of the
DLT resources. The key advantages of the proposed access control scheme are
as follows.

Title Suppressed Due to Excessive Length 3

– Zero token fees: our proposal does not require to pay any tokens to issue
blocks; instead, the Access Credit, continuously generated, can be used to
create new blocks, whose cost is proportional to its computation and storage
requirements as well as the global demand for write access.

– Leaderless: contrary to most existing access control schemes for both blockchain
and DAG-based architectures, our proposed solution does not rely on lead-
ers or rounds; this greatly improves resilience against censorship and value
extraction by powerful block creators.

– Parallel ledger updates: with a leaderless DAG-based ledger we enable
parallel execution and writing, as blocks can reference multiple past blocks
concurrently.

Furthermore, we validate our approach through Python simulations that
show the effectiveness of our solution: as we will see, the parallel execution
facilitated by the DAG ledger introduces additional complexity to keep ledger
consistency across all network participants. We highlight to the reader that we
present our proposal in a general manner, that is we do not refer to any existing
solution such that the principles described in this paper can be applied to any
leaderless DAG-based DLT, and as such, the analysis may lack implementation-
specific details. To account for any important omissions, we add an extensive
discussion section to present some of the questions that one may encounter while
implementing our proposal.

1.3 Paper structure

The rest of the paper is organized as follows: the system model is introduced in
Section 2; then, in Section 3, we present our access control policy; after that,
Section 4 presents our Python simulations in both single- and multi-node en-
vironment. Finally, we present some discussion in Section 5 and conclude our
paper in Section 6.

2 System model

2.1 Actors

We categorize the actors of a leaderless DLT as follows.

– Accounts: actors capable of holding tokens and, in our proposal, Access
Credit. As such, accounts are capable of gaining write access to the ledger
by creating blocks. Please note that an account-based DLT is not necessarily
mutually exclusive with the UTXO model; in fact, an account can be thought
as an identity registered in the ledger to whom one of more UTXOs are
associated.

– Nodes: the physical machines able to peer with each other to keep local
versions of the ledger (related to accounts’ token and Access Credit balances)
up-to-date through block processing and forwarding.

4 D. Camargo et al.

Remark: it is important to note that an account being a block creator in our
scheme does not necessarily have the same implications as it does in blockchain
architectures. Specifically, block creators do not necessarily act as validators
do in blockchains, gathering transactions from a shared mempool to include in
their blocks. In fact, such a shared mempool is not possible in a DAG-based
ledger because blocks are written to the ledger in parallel. Our work focuses on
management of write access for accounts, so although these accounts are block
issuers, we assume that their motive is to write to their own data to the ledger
rather than considering them as intermediaries for base users.

In our model, accounts are the ones including state-changing data into blocks,
thus they keep cryptographic signatures to confirm ownership of such data and
consume Access Credit to issue the blocks containing such data. [15]. For the
sake of completeness, we mention that forms of delegations are possible both
for access (through service providers [16]) and for consensus (through delegated
Proof of Stake [17]).

2.2 Blocks

A block is the fundamental data structure of DLTs carrying value transactions,
data, smart contract executions, or any other information that may alter the
ledger state. Blocks must also include a cryptographic relation with past blocks,
the issuer’s signature and fields to manage the consensus protocol (e.g., times-
tamps). In blockchain technologies, the cryptographic relation is the hash of the
block that the issuer believes to be the last included in the ledger. On the other
hand, DAG technologies have more malleability: in fact, as multiple blocks may
be referenced, the simple act of issuing a block can be used as a statement about
trust in numerous blocks. This advantage of DAGs for DLTs was explored in
consensus protocols such as [6]. As the content of each block may vary greatly,
in this paper we define an associated “cost”, which we call work. Work is mea-
sured by a protocol gadget as a part of the node software, and it is intended to
represent the computational load on the node while processing the block and ap-
plying the necessary state changes as well as the resource consumption in terms
of bandwidth and storage. As an example, size (in bytes) of the block is one
components of the work calculation.

2.3 Access Credit

The ledger keeps track of computing and storing both Access Credit and token
balances. Access Credit is used to gain write access to the ledger. We refer to
the amount of spent Access Credits as the credit consumed. This quantity needs
to be part of the block and it must be signed by the associated account so that
the value cannot be altered. The vredit consumed is then used to determine
the priority of the block when there is competition to gain write access, as
we shall explain in the following section describing our access control. Credits
are generated when tokens are moved to a new address through blocks, smart

Title Suppressed Due to Excessive Length 5

contracts or other means. The amount generated follows the amount of tokens
and the time spent in such an address:

AccessCredit = TokensMoved × TimeHeld − CreditConsumed. (1)

When the value in (1) is positive, there is a surplus of credits that will be given
to a declared account, in an act we call allotting credits. Each protocol has its
time mechanisms, and the only requirement in the term TimeHeld from equation
(1) is that it is objective (so each node agree on how much each account holds of
credit). This property is trivial for UTXO-based ledger, but can also be induced
in any other protocol by using appropriate timestamping mechanisms.

3 Credit-based access control

In this section, we present the Credit-based access control mechanism for leader-
less DLTs using DAG ledgers for parallel writing and execution. We stress that
our proposal does not make use of token fees.

3.1 Block creation

As we mentioned, accounts are the actors that include the state-changing data
(e.g., value transactions, smart contracts) in the blocks. They are required to
interact with a node to set a reasonable amount of Access Credit consumed
and to forward the block to the rest of the DLT network. In fact, nodes can be
thought as gateways to the network and play a fundamental role in the congestion
management of the entire architecture: accounts (that can be managed through
wallets or light nodes) do not receive nor process the blocks produced in the
network. Consequently, they ignore the current congestion level and are enable
to properly set the amount of Access Credit to consume. Hence, accounts must
either set up their own nodes or use third-party free or paid services (e.g., through
access service providers).

Upon request, nodes send information related to the real-time congestion
level of the newtork, namely an estimation of the amount of Access Credit needed
to successfully schedule a block. Then, account can take a more or less conser-
vative approach when setting the credit consumed of the newly created block
depending on the account’s preferences, similarly to the way priority is set when
gas fees are paid in Ethereum [18]. In this work, we assume that consumed Ac-
cess Credit is a quantity larger or equal to 0: while bounds are useful for spam
protection (in the case of a lower bound) and to avoid overspending resources
(in the case of an upper bound), we leave the study of this optimization as a
future work.

3.2 Access control

In this section, we describe our proposed access control mechanism for leaderless
DAG-based DLTs. Unlike standard blockchains where block producers try to

6 D. Camargo et al.

extract value by selecting the most profitable blocks, in our approach the rules
are defined at protocol level and each node participates without the possibility
of extracting value. Our access control chooses which blocks get gossiped in
the peer-to-peer network, where the Access Credit is consumed instead of being
redistributed, hence nodes have no incentives to deviate from the protocol.

In the following, we present the main components of our proposal, namely
the enqueueing phase, the scheduling mechanism and the policy to drop blocks
during congestion.

Enqueuing As blocks get gossiped, receiving nodes verify the correctness of
their content (verification procedure varies depending on the specific implemen-
tation). For valid blocks, the protocol calculates the Priority Score, defined as
follows.

Definition 1 (Priority Score) Consider a block B and the tuple (cB , wB) where
cB is the Access Credit consumed and wB the work of block B. We refer to Pri-
ority Score SB the ratio between the Access Credit consumed and the work of
block B:

SB =
cB
wB

. (2)

Once the Priority Score is computed, the block is enqueued into the scheduling
buffer, which gathers all blocks not yet scheduled (more details in the Scheduling
subsection). In our proposal, this buffer is a priority queue sorted by Priority
Score. The insert of a new block in the buffer has linear complexity.

Scheduling The scheduling policy is a mechanism that selects which blocks
must be forwarded in the DLT network. We consider a scheduler that works in
a service loop, where every τ units of time it selects the blocks with the largest
Priority Score in the scheduling buffer such that the work units of the selected
blocks are smaller or equal than m work units. In this scenario, the enforced
network throughput limit is m/τ work units per second.

When a block is chosen to be scheduled, it is forwarded to neighbouring
nodes where it can be enqueued in their buffer if they have not yet received
it, after which the block undergoes the same scheduling process in each new
node. We do not assume any specific gossip protocol: flooding, i.e., forwarding
indiscriminately to all neighbours, is a popular choice in DLTs, but this can be
optimised to save network bandwidth.

Block drop In practice, scheduling buffers have a limited size. In fact, the
usage of large buffers in networks has been proved to be detrimental to perfor-
mance [19]. In this work, we use a simple policy to drop blocks when the buffers
get full, namely the protocol will drop the block with the lowest priority score,
removing it from the buffer. Additionally, to limit the effectiveness of long-range
attacks, we also drop blocks whose timestamps become older than a certain
threshold compared to the node’s local clock.

Title Suppressed Due to Excessive Length 7

Remark: when blocks do not get finalized, i.e., they do not receive enough
references, the Access Credit consumed is “reimbursed” to the issuer’s account.
The reimbursement should happen when the consensus mechanism reaches final-
ization on the state of non-inclusion of the data in the ledger state. The exact
details on how long the data is kept and the reimbursement takes is specific to
each consensus mechanism, and thus protocol, being out of the scope of the write
access mechanism of this paper.

4 Simulations

This section shows a performance analysis concerning the credit-based access
control proposed in Section 3. We first introduce the simulation setup in Sec-
tion 4.1. Then, in Section 4.2, we analyse the performance of the access control
by looking at a single node: this allows to collect metrics related to cost of new
blocks, time spent in the scheduling buffer, scheduled and not scheduled blocks
per account, etc. Finally, in Section 4.3, we present the outcomes of experiments
on a multi-node setting to verify ledger consistency and analyse the rate of dis-
carded blocks.

4.1 Simulation setup

In our setup, we consider 1000 accounts, i.e., block issuers. The token holdings
belonging to those issuers are drawn from a Power Law distribution of the form

p(x) =
α− 1

xmin
·
(

x

xmin

)−α

, (3)

where α = 2 and minimum token xmin = 10. A visual representation of the
token holdings sorted by tokens can be found in Figure 1. The amount of tokens
per issuer does not vary over the course of the simulations. Furthermore, each
user gets 1 credit/second for every 10 tokens held: for example, a user with 25
tokens obtains 2.5 credit/second.

Blocks are generated according to a non-homogenerous Poisson Process, with
alternating congested and uncongested periods of 3 minutes each. We define a
congested period as the time interval where total block generation rate1 is larger
than scheduling rate. The simulation is run for one hour, that is 10 congested
periods and 10 uncongested periods. Additionally, we impose a scheduling rate
of 100 blocks per second, i.e., a block is scheduled every 10 ms (for the sake
of simplicity, all blocks have the same size). In our simulations, the number of
blocks issued by an account is proportional to its token holdings. Moreover, we
define four types of block issuers according to the way the block cost is set2:
1 This is the sum of the block generation rate over all accounts.
2 We stress that more sophisticated strategies are expected to optimize the perfor-

mance of the system and will be studied as a future work.

8 D. Camargo et al.

Fig. 1: Token held by account.

– Impatient: These accounts consume all of their Access Credits each time
they issue a block, so their credit consumption per transaction is high when
they do not have many transactions to issue, and the credit consumption per
transaction is low when they have a large number of transactions to issue.
They do not respond in any way to the credit consumption they see in the
buffer.

– Greedy: These accounts look at the highest amount of Access Credit con-
sumed in the scheduling buffer and consume 1 more Access credit than this.
If this greedy policy dictates that they would need to consume more than
they have, they simply do not issue anything until the price goes down or
they have generated enough Access Credit.

– Gambler: These nodes consume the amount of Access Credit of one of the
top 20 blocks in the priority queue, chosen randomly.

– Opportunistic: These nodes consume 0 Access Credit, regardless of what is
seen in the scheduling buffer. Traffic from these nodes is perfectly acceptable
during periods of low congestion, but constitutes spam during congested
periods and it is expected to be dropped from scheduling buffers.

Finally, we assume the buffer having a maximum capacity of 500 blocks.
Blocks are removed from the buffer when one of the two scenario happens:

– Full buffer: If the buffer contains 500 blocks, a newly arrived block can be
added to the buffer if and only if it consumes more Access Credits than those
consumed by at least one block in the buffer; in this case, the latter will be
removed and replaced with the newly arrived block.

– Maximum time in the buffer: When a block spends 30 seconds in the
buffer without being scheduled, it gets immediately removed.

Potential changes in the parameters used in the multi-node simulator will be
explicitly mentioned in Section 4.3.

Title Suppressed Due to Excessive Length 9

4.2 Single-node simulator

(a) All accounts are impa-
tient users.

(b) All accounts are greedy
users.

(c) All accounts are gambler
users.

Fig. 2: Traffic load (top figure), credits consumed (middle) and sojourn time
(bottom) per block over time. Red line indicates the scheduling rate in the traffic
load plot, and the moving average in the other plots.

Impatient strategy In this set of simulations, all accounts follow the impa-
tient consumption strategy. In Figure 2a, we plot the cost of a scheduled block
and the sojourn time of the same block as the simulation time advances. As a
reference, we also add the traffic load over time, which alternates congested and
uncongested periods. When accounts act as impatient users, we realize that the
cost of a block increases during less congested periods, while – during congestion
– the cost of a block stabilizes at less than 30 credits with peaks up to 150 cred-
its; conversely, in uncongested periods the credits spent is at least the double.
This is because users tend to overspend when using this consumption strategy:
during congestion, accounts have less time to accumulate Access Credit; the plot
basically shows how much one can accumulate since the latest block it has issued
– accumulation is larger if blocks are issued less often.

The sojourn time, defined as the time a block spends in the scheduling buffer
(remember, this is a single-node simulator, so the sojourn time is the time spent
in a single buffer), is very low when the network is uncongested but experiences
large oscillations during congestion: in particular, after the transition to conges-
tion, the mean sojourn time spikes to around 2 seconds and then keeps oscillating
between 0.5 and 1 second; a non-negligible number of blocks experience a much
larger sojourn time as it can be seen by the blue line in Figure 2a.

Greedy strategy Here, we show the same set of plots, but when all accounts
act as greedy. A greedy consumption strategy seems to optimize the inefficiencies
of the impatient one, which tends to overspend unnecessarily. The cost of a

10 D. Camargo et al.

block, from Figure 2b, is now very low (close to 0) with little traffic; however,
the transition to a congested network creates a very steep increase in the cost
of a scheduled block: for a short period of time, the average consumed Access
Credits is larger than 300, then suddenly decreasing around 30. This strategy can
be compared with first price auctions, carrying their intrinsic drawbacks as well.
While several recent approaches have been trying to mitigate the fluctuations in
the block cost and to improve the user experience [3][18], we stress that finding
an optimal credit consumption policy is out of the scope of this paper.

Similarly, it is possible to see frequent oscillations in the sojourn times with
spikes (i) at the beginning and (ii) at the end of the congested period: (i) the
increased traffic load alters the dynamics of the system, lowering the rank in the
priority queue for blocks not yet scheduled, and we notice that oscillations are
visible throughout the entire congested period; (ii) additionally, when congestion
ends, a lot of blocks sitting in the buffer for long (but not yet dropped) have the
opportunity to be scheduled experiencing a large delay, witnessed by the spike
at the end of each high-traffic period.

Gambler strategy In this set of simulations we have all accounts with the gam-
bler strategy. There are clear differences with the previous scenarios: in Figure 2c,
we see that the spikes in the Credits consumed are largely reduced compared to
the greedy scenario: we cannot see accounts consuming more than 100 credits.
However, the cost of scheduled blocks stabilizes at a price only marginally lower
than the previous scenarios.

Mixed strategy In this scenario, we allow users with different consumption
strategies to coexist. Specifically, 10% of accounts is impatient, 60% is greedy
and the rest is gambler. This set of simulations aim to provide a more realistic
environment where multiple types of users share the network.

In Figure 3 we see that the average cost of a scheduled block is still driven
large by impatient accounts, although such nodes represent only the 10% of the
total block issuers. Similar to previous scenarios, we also see large oscillations in
the sojourn times during congestion with peaks up to 2 seconds.

An interesting consideration can be done with respect to Figure 4, which de-
couples the sojourn time per account differentiating between impatient (yellow),
greedy (red) and gambler (dark red): we observe that the mean sojourn time for
greedy issuers is much lower than the other policies. While a large sojourn time
is expected for gambler, it should not be the case for impatient. The explanation
is that greedy users do not issue blocks if they do not have enough Access Cred-
its: basically, these accounts have a self-regulating rate setter, and the benefits
in terms of improved delays are clearly visible.

4.3 Multi-node simulator

Description of the simulator The following simulations are implemented in a
multi-node simulator which emulates a complete DAG-based DLT protocol, i.e.,

Title Suppressed Due to Excessive Length 11

Fig. 3: Traffic load (top figure), credits consumed (middle) and sojourn time (bot-
tom) per block over time in the mixed scenario. Red line indicates the scheduling
rate in the traffic load plot, and the moving average in the other plots.

Fig. 4: Sojourn time and related mean per account.

12 D. Camargo et al.

each node maintains a copy of the DAG, uses a selection algorithm to choose
where attach new blocks and checks the validity of all arriving blocks. A number
of specific DAG-based protocol details are included which our proposal do not
necessarily depend on, but this allows us to at least provide prelimenary results
for integrating this approach into a working protocol. Each node also operates an
account for issuing blocks, so we use the terms node and account interchangeably
in this section. The same consumption policies are tested as for the single-node
simulator, but we use a smaller network and shorter simulation times to facilitate
detailed presentation of each node’s outcome.

The simulations consist of 20 nodes connected in a random 4-regular graph
topology i.e., 4 neighbours each. The communication delays between nodes are
uniformly distributed between 50 ms and 150 ms. The scheduling rate is 25
blocks per second. We use the same token distribution as in the single-node
simulator. We initially consider a mix of greedy and opportunistic nodes with
token holding distribution as illustrated in Figure 5.

We slightly modify the block generation process in this set of simulations:
here, blocks are generated according to a separate Poisson process for each node
and added to the node’s local mempool from which they can create blocks. For
the first minute of each simulation, blocks are generated at 50% of the scheduling
rate, then for the following two minutes, the rate gets to 150% compared to
scheduling rate, and for the final minute, it decreases to the 50% again. This
traffic pattern simply seeks to show one cycle of increase in demand and then
subsiding of demand.

Finally, we introduce the concept of block confirmation in the DAG through
Cumulative Weight (CW):

Definition 2 (Block confirmation) The CWB ∈ N+ of block B indicates
how many times B has been referenced directly or indirectly by other blocks.
If CWB ≥ 100, then a node locally considers block B as confirmed.

Definition 3 (Confirmation Rate) A block is confirmed when all nodes have
marked the block as confirmed. Confirmation rate is the rate at which blocks
become confirmed.

CW in a DAG is analogous to the depth of a block in a blockchain which is often
used for confirmation. Additionally:

Definition 4 (Dissemination Rate) A block is disseminated when all nodes
have seen the block. Dissemination rate is the rate at which blocks become dis-
seminated.

Remark: “Scaled” plots are scaled by the node’s “fair share” of the scheduler
throughput which is proportional to their token holdings, so a scaled rate of 1
means they are getting 100% of their fair share. In plots showing metrics for all
nodes, the thickness of the trace corresponding to each node is proportional to
the token holdings of that node.

Title Suppressed Due to Excessive Length 13

Fig. 5: Token distribution and credit consumption policies for 20 nodes.

Experimental results We begin by considering the dissemination rates, as
seen in Figure 6. Here, the greedy nodes are able to issue more than their “fair
share” because the opportunistic nodes are opting not to consume any Cred-
its and hence the greedy nodes get priority from the scheduler by consuming
more. Figure 7 displays the corresponding dissemination latency of each node’s
blocks as a cumulative density. This paints a similar picture, with greedy nodes
experiencing lower delays than their opportunistic counterparts.

Figure 8 illustrates the confirmation rates corresponding to this simulation.
These traces follow a very similar trajectory to the dissemination rates, but
we notice that even when congestion dies down, the confirmation rates of the
opportunistic nodes do not recover immediately as the dissemination rates did.
This is due to the fact that many old delayed blocks from the congested period
are stuck in the buffers of nodes across the network and as these old blocks begin
to be forwarded when the congestion goes away, they are not selected by other
nodes to attach to, so their cumulative weight does not grow and they do not
become confirmed.

These multi-node simulator results only present a very limited scenario with
basic credit consumption policies, but the results show promise for providing ef-
fective access control. However, they also begin to show some of the complexities
of integrating this approach into complete DAG-based DLT protocols. Further
studies need to be carried out for specific DAG implementations to fully under-
stand the implications of our approach.

5 Discussion

5.1 Economic Incentives

As we discussed before, fees can be used to regulate access to DLT, but can also
bring detrimental properties, such as the possibility of extracting value from
users and the creation of inconsistencies in access. Nevertheless, fees provide

14 D. Camargo et al.

Fig. 6: Dissemination rates and scaled dissemination rates. The scaled rate shows
the rate relative to the account’s token holdings.

Fig. 7: Cumulative density function of the dissemination latency.

Title Suppressed Due to Excessive Length 15

Fig. 8: Confirmation rates and scaled confirmation rates. The scaled rate shows
the rate relative to the account’s token holdings.

essential incentives for many protocols, usually being the way security is ensured.
In order to create sustainable economic incentives, we expect that Access Credits
will have an active market, where users can sell their spare access. This creates
a positive feedback loop where the generated gains received are in form of access
which further incentives network adoption and usage.

5.2 Limiting the accumulation of Access Credit

One can notice that the way Access Credit is defined makes this quantity highly
inflationary, as credits are passively generated by tokens even when they are
not in use. This could lead to situations where congestion leads to an amount
of Access Credits consumed being excessively high, which would make access
prohibitive for some periods of time, or to situations where accounts can accu-
mulate enough Access Credits to continuously spam the network for some time.
To counteract these events, we propose to introduce a concave function F (t)
increasing with time, where F (0) = 0, such that Eq. (1) becomes:

AccessCredit = TokensMoved × F (TimeHeld)
− CreditConsumed.

This slows down the accumulation and, depending on the function chosen
can even cap it, e.g., when F (t) ∝ (1 − e−γt). Using a concave function in the

16 D. Camargo et al.

TimeHeld factor has a side effect: it pushes one to create blocks to allot credits
more often, since Access Credit generation is faster soon after tokens are moved.
The Access Credits being consumed to issue block will work as an offset to this: if
an account allots credits from their tokens n times during the TimeHeld interval
and consuming the same amount of Access Credits each time, the balance by
the end would be

AccessCreditn = TokensMoved × nF (TimeHeld/n)
− nCreditConsumed.

Hence, the Access Credit generated over this generated will have a maximal
value in n.

5.3 The negative Access Credit problem

Due to the distributed nature of DLTs, Access Credit balances may become
temporarily negative either due to natural network delay or due to malicious be-
havior (similar to nothing-at-stake problem). In this paper, we have not touched
yet the scenario where accounts reach negative balance on Access Credits. The
most effective solution is to process all blocks from the account with negative bal-
ance, find consensus on which ones should be accepted and punish the offending
account after this process.

Remark: it is not possible to filter out blocks leading to negative Access
Credit balances to avoid forks in nodes’ local views of the DAG. Suppose a
malicious account sends two blocks, A and B, where processing only one of
them would not cause its balance to go negative but processing both would. A
subset of the nodes in the network may process A and filter B, while the other
subset may process B and filter out A. This would create a problematic scenario
where nodes will have inconsistent views of the ledger. An attacker could then
repeat this procedure with many blocks, creating many possible forks.

6 Conclusion

We have proposed a credit-based access control mechanism for leaderless DAG-
based DLTs. Our solution solves the problem of regulating write access to DAG-
based DLTs without the need for token fees or serialisation of ledger updates into
blocks by validators. The proposal is based on Access Credits, which are naturally
generated for holding the base token. State-changing data must consume these
credits to be included in the ledger, creating a utility loop where rewards are
given in Access Credits.

Our simulations show that under varied user behaviors, the consumed credits
remain stable over time, even with large jumps of demand for ledger write access.
Additionally, we showed that write access can be effectively regulated across
multiple nodes in a peer-to-peer network in some simple scenarios. Leaderless
DAG-based ledgers present enormous potential for advances in the DLT field,
and this work will provide a foundation for similar schemes seeking to manage
write access in these systems in the future.

Title Suppressed Due to Excessive Length 17

References

1. S. Wang, L. Ouyang, Y. Yuan, X. Ni, X. Han, and F.-Y. Wang, “Blockchain-enabled
smart contracts: Architecture, applications, and future trends,” IEEE Transactions
on Systems, Man, and Cybernetics: Systems, vol. 49, no. 11, pp. 2266–2277, 2019.

2. J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W. Felten,
“Sok: Research perspectives and challenges for bitcoin and cryptocurrencies,” in
2015 IEEE symposium on security and privacy. IEEE, 2015, pp. 104–121.

3. T. Roughgarden, V. Syrgkanis, and E. Tardos, “The price of anarchy in auctions,”
J. Artif. Int. Res., vol. 59, no. 1, p. 59–101, may 2017.

4. Q. Zhou, H. Huang, Z. Zheng, and J. Bian, “Solutions to scalability of blockchain:
A survey,” IEEE Access, vol. 8, pp. 16 440–16 455, 2020.

5. Y. Sompolinsky, Y. Lewenberg, and A. Zohar, “Spectre: A fast and scalable
cryptocurrency protocol,” Cryptology ePrint Archive, Paper 2016/1159, 2016,
https://eprint.iacr.org/2016/1159. [Online]. Available: https://eprint.iacr.org/
2016/1159

6. S. Müller, A. Penzkofer, N. Polyanskii, J. Theis, W. Sanders, and H. Moog, “Tangle
2.0 leaderless nakamoto consensus on the heaviest dag,” IEEE Access, vol. 10, pp.
105 807–105 842, 2022.

7. A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger
of bft protocols,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 31–42. [Online]. Available:
https://doi.org/10.1145/2976749.2978399

8. L. Baird, M. Harmon, and P. Madsen, “Hedera: A public hashgraph
network and governing council,” 2020. [Online]. Available: https://hedera.com/
hh{_}whitepaper{_}v2.1-20200815.pdf

9. A. Gągol, D. Leśniak, D. Straszak, and M. Świętek, “Aleph: Efficient atomic broad-
cast in asynchronous networks with byzantine nodes,” in Proceedings of the 1st
ACM Conference on Advances in Financial Technologies, 2019, pp. 214–228.

10. G. Danezis, L. Kokoris-Kogias, A. Sonnino, and A. Spiegelman, “Narwhal and
tusk: A dag-based mempool and efficient bft consensus,” in Proceedings of the
Seventeenth European Conference on Computer Systems, ser. EuroSys ’22. New
York, NY, USA: Association for Computing Machinery, 2022, p. 34–50. [Online].
Available: https://doi.org/10.1145/3492321.3519594

11. P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach, and
A. Juels, “Flash boys 2.0: Frontrunning in decentralized exchanges, miner ex-
tractable value, and consensus instability,” in 2020 IEEE Symposium on Security
and Privacy (SP). IEEE, 2020, pp. 910–927.

12. A. Churyumov, “Byteball: A decentralized system for storage and transfer of
value,” 2016. [Online]. Available: https://byteball.org/Byteball.pdf

13. C. LeMahieu, “Nano whitepaper,” 2022. [Online]. Available: https://docs.nano.
org/living-whitepaper/

14. V. Bagaria, S. Kannan, D. Tse, G. Fanti, and P. Viswanath, “Prism:
Deconstructing the blockchain to approach physical limits,” in Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security, ser.
CCS ’19. New York, NY, USA: Association for Computing Machinery, 2019, p.
585–602. [Online]. Available: https://doi.org/10.1145/3319535.3363213

15. C. Ovezik and A. Kiayias, “Decentralization analysis of pooling behavior in cardano
proof of stake,” in Proceedings of the Third ACM International Conference on AI
in Finance, 2022, pp. 18–26.

https://eprint.iacr.org/2016/1159
https://eprint.iacr.org/2016/1159
https://eprint.iacr.org/2016/1159
https://doi.org/10.1145/2976749.2978399
https://hedera.com/hh{_}whitepaper{_}v2.1-20200815.pdf
https://hedera.com/hh{_}whitepaper{_}v2.1-20200815.pdf
https://doi.org/10.1145/3492321.3519594
https://byteball.org/Byteball.pdf
https://docs.nano.org/living-whitepaper/
https://docs.nano.org/living-whitepaper/
https://doi.org/10.1145/3319535.3363213

18 D. Camargo et al.

16. A. Cullen, L. Zhao, L. Vigneri, and R. Shorten, “Improving quality of
service for users of dag-based distributed ledgers,” 2022. [Online]. Available:
https://arxiv.org/abs/2203.12076

17. D. Larimer, “Delegated proof-of-stake (dpos),” Bitshare whitepaper, vol. 81, p. 85,
2014.

18. S. Leonardos, B. Monnot, D. Reijsbergen, E. Skoulakis, and G. Piliouras,
“Dynamical analysis of the eip-1559 ethereum fee market,” in Proceedings of
the 3rd ACM Conference on Advances in Financial Technologies, ser. AFT ’21.
New York, NY, USA: Association for Computing Machinery, 2021, p. 114–126.
[Online]. Available: https://doi.org/10.1145/3479722.3480993

19. J. Gettys, “Bufferbloat: Dark buffers in the internet,” IEEE Internet Computing,
vol. 15, no. 3, pp. 96–96, 2011.

https://arxiv.org/abs/2203.12076
https://doi.org/10.1145/3479722.3480993

	Managing Write Access without Token Fees in Leaderless DAG-based Ledgers

