Skip to main content

A Novel Graph Representation Learning Approach for Visual Modeling Using Neural Combinatorial Optimization

  • Conference paper
  • First Online:
Pattern Recognition and Machine Intelligence (PReMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14301))

  • 646 Accesses

Abstract

The human visual system is a complex network of neurons that employs robust mechanisms to perceive and interpret the environment. Despite significant advancements in computer vision technologies in recent years, they still need to improve compared to human abilities, particularly in recognizing faces and interpreting scenes. As a result, there is a growing interest in understanding the underlying mechanisms of human vision. Artificial Intelligence (AI) systems, specifically computer vision models, represent the assigned task using a learned or systematically generated vector space known as the Latent Space. However, the field of brain representation space remains relatively less explored. Despite significant progress, a research gap exists in generating an optimal representation space for human visual processing. While graph-based representations have been proposed to better capture inter-region relationships in visual processing, learning an optimal graph representation from limited data remains a challenge, especially when there is no ground truth. Due to the lack of labeled data, supervised learning approaches are less preferred. The present study introduces a novel method for graph-based representation of the human visual processing system, utilizing Neural Combinatorial Optimization(NCO). We have obtained an accuracy of 60% from our proposed framework, which is comparable to other methods for eight class classification in Visual Modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, P., Stansbury, D., Malik, J., Gallant, J.: Pixels to voxels: Modeling visual representation in the human brain (07 2014)

    Google Scholar 

  2. Bello, I., Pham, H., Le, Q., Norouzi, M., Bengio, S.: Neural combinatorial optimization with reinforcement learning (2016)

    Google Scholar 

  3. Chatterjee, S., Pain, S., Samanta, D.: Adversarial policy gradient for learning graph-based representation in human visual processing (2023). https://openreview.net/forum?id=5-ROmmBJKV

  4. Cui, Y., Qiao, K., Zhang, C., Wang, L., Yan, B., Tong, l.: GaborNet visual encoding: a lightweight region-based visual encoding model with good expressiveness and biological interpretability. Front. Neurosci. 15, 614182 (2021). https://doi.org/10.3389/fnins.2021.614182

  5. Deshpande, G., Wang, Y.: Noninvasive characterization of functional pathways in layer-specific microcircuits of the human brain using 7T fMRI. Brain Sci. 12, 1361 (2022). https://doi.org/10.3390/brainsci12101361

    Article  Google Scholar 

  6. Dipasquale, O., et al.: Comparing resting state fMRI de-noising approaches using multi- and single-echo acquisitions. PLoS ONE 12, e0173289 (2017)

    Article  Google Scholar 

  7. Gilson, M., et al.: Network analysis of whole-brain fMRI dynamics: a new framework based on dynamic communicability. NeuroImage 201, 116007 (2019). https://doi.org/10.1016/j.neuroimage.2019.116007

    Article  Google Scholar 

  8. Güçlü, U., van Gerven, M.A.J.: Deep neural networks reveal a gradient in the complexity of neural representations across the brain’s ventral visual pathway (2014). https://doi.org/10.1523/JNEUROSCI.5023-14.2015. http://arxiv.org/abs/1411.6422https://doi.org/10.1523/JNEUROSCI.5023-14.2015

  9. Han, K., et al.: Variational autoencoder: an unsupervised model for encoding and decoding fMRI activity in visual cortex. NeuroImage 198, 125–136 (2019). https://doi.org/10.1016/j.neuroimage.2019.05.039

    Article  Google Scholar 

  10. Haxby, J.V.: Multivariate pattern analysis of fMRI: the early beginnings (2012). https://doi.org/10.1016/j.neuroimage.2012.03.016

  11. Haynes, J.D., Rees, G.: Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nat. Neurosci. 8, 686–91 (2005). https://doi.org/10.1038/nn1445

    Article  Google Scholar 

  12. Kay, K., Naselaris, T., Prenger, R., Gallant, J.: Identifying natural images from human brain activity. Nature 452, 352–5 (2008). https://doi.org/10.1038/nature06713

    Article  Google Scholar 

  13. Kay, K.N.: Principles for models of neural information processing (2018). https://doi.org/10.1016/j.neuroimage.2017.08.016

  14. Kriegeskorte, N.: Pattern-information analysis: from stimulus decoding to computational-model testing. NeuroImage 56, 411–421 (2011). https://doi.org/10.1016/j.neuroimage.2011.01.061

    Article  Google Scholar 

  15. Li, X., et al.: BrainGNN: interpretable brain graph neural network for fMRI analysis. Medical Image Analysis 74, 102233 (2021). https://doi.org/10.1016/j.media.2021.102233

    Article  Google Scholar 

  16. Li, Y., et al.: Brain connectivity based graph convolutional networks for infant age prediction. IEEE Trans. Med. Imaging, 1–1 (2022). https://doi.org/10.1109/TMI.2022.3171778

  17. Meng, L., Ge, K.: Decoding visual fMRI stimuli from human brain based on graph convolutional neural network. Brain Sci. 12, 1394 (2022). https://doi.org/10.3390/brainsci12101394

    Article  Google Scholar 

  18. Mohanty, R., Sethares, W., Nair, V., Prabhakaran, V.: Rethinking measures of functional connectivity via feature extraction. Sci. Rep. 10, 1298 (2020). https://doi.org/10.1038/s41598-020-57915-w

    Article  Google Scholar 

  19. Naselaris, T., Kay, K.N., Nishimoto, S., Gallant, J.L.: Encoding and decoding in fMRI (2011). https://doi.org/10.1016/j.neuroimage.2010.07.073

  20. Thirion, B., et al.: Inverse retinotopy: inferring the visual content of images from brain activation patterns. NeuroImage 33, 1104–16 (2007). https://doi.org/10.1016/j.neuroimage.2006.06.062

    Article  Google Scholar 

  21. Wen, H., Shi, J., Chen, W., Liu, Z.: Deep residual network predicts cortical representation and organization of visual features for rapid categorization. Sci. Rep. 8, 3752 (2018). https://doi.org/10.1038/s41598-018-22160-9

    Article  Google Scholar 

  22. Wen, H., Shi, J., Zhang, Y., Lu, K.H., Cao, J., Liu, Z.: Neural encoding and decoding with deep learning for dynamic natural vision. Cereb. Cortex 28, 4136–4160 (2018). https://doi.org/10.1093/cercor/bhx268

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhrasankar Chatterjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chatterjee, S., Pain, S., Samanta, D. (2023). A Novel Graph Representation Learning Approach for Visual Modeling Using Neural Combinatorial Optimization. In: Maji, P., Huang, T., Pal, N.R., Chaudhury, S., De, R.K. (eds) Pattern Recognition and Machine Intelligence. PReMI 2023. Lecture Notes in Computer Science, vol 14301. Springer, Cham. https://doi.org/10.1007/978-3-031-45170-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45170-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45169-0

  • Online ISBN: 978-3-031-45170-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics