Skip to main content

Self-supervised Diffusion Model for Anomaly Segmentation in Medical Imaging

  • Conference paper
  • First Online:
Pattern Recognition and Machine Intelligence (PReMI 2023)

Abstract

A powerful mechanism for detecting anomalies in a self-supervised manner was demonstrated by model training on normal data, which can then be used as a baseline for scoring anomalies. Recent studies on diffusion models (DMs) have shown superiority over generative adversarial networks (GANs) and have achieved better-quality sampling over variational autoencoders (VAEs). Owing to the inherent complexity of the systems being modeled and the increased sampling times in the long sequence, DMs do not scale well to high-resolution imagery or a large amount of training data. Furthermore, in anomaly detection, DMs based on the Gaussian process do not control the target anomaly size and fail to repair the anomaly image, which led us to the development of a simplex diffusion and selective denoising \( ((SD)^2) \) model. \( (SD)^2 \) does not require a full sequence of Markov chains in image reconstruction for anomaly detection, which reduces the time complexity, samples from the simplex noise diffusion process that have control over the anomaly size and are trained to reconstruct the selective features that help to repair the anomaly. \( (SD)^2 \) significantly outperformed the publicly available Brats2021 and Phenomena detection from X-ray image datasets compared to the self-supervised model. The source code is made publicly available at https://github.com/MAXNORM8650/SDSquare.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Roy, S., Bhattacharyya, D., Bandyopadhyay, S.K., Kim, T.H.: Heterogeneity of human brain tumor with lesion identification, localization, and analysis from MRI. Inform. Med. Unlocked 13, 139–150 (2018)

    Article  Google Scholar 

  2. Roy, S., Shoghi, K.I.: Computer-aided tumor segmentation from T2-weighted MR images of patient-derived tumor xenografts. In: Karray, F., Campilho, A., Yu, A. (eds.) ICIAR 2019. LNCS, vol. 11663, pp. 159–171. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27272-2_14

    Chapter  Google Scholar 

  3. Kabiraj, A., Meena, T., Reddy, P.B., Roy, S.: Detection and classification of lung disease using deep learning architecture from x-ray images. In: Bebis, G., et al. (eds.) ISVC 2022. LNCS, vol. 13598, pp. 444–455. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20713-6_34

    Chapter  Google Scholar 

  4. Kumar, K., Kumar, H., Wadhwa, P.: Encoder-decoder (LSTM-LSTM) network-based prediction model for trend forecasting in currency market. In: Thakur, M., Agnihotri, S., Rajpurohit, B.S., Pant, M., Deep, K., Nagar, A.K. (eds.) Soft Computing for Problem Solving. Lecture Notes in Networks and Systems, vol. 547, pp. 211–223. Springer, Singapore (2023). https://doi.org/10.1007/978-981-19-6525-8_17

    Chapter  Google Scholar 

  5. Kingma, D.P., Welling, M.: An introduction to variational autoencoders. Found. Trends Mach. Learn. 12(4), 307 (2019)

    Article  MATH  Google Scholar 

  6. Baumgartner, C.F., Koch, L.M., Tezcan, K.C., Ang, J.X., Konukoglu, E.: Visual feature attribution using Wasserstein GANs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8309–8319 (2018)

    Google Scholar 

  7. Goodfellow, I.J., et al.: Generative adversarial networks. arXiv preprint arXiv:1406.2661 (2014)

  8. Pirnay, J., Chai, K.: Inpainting transformer for anomaly detection. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds.) ICIAP 2022. LNCS, vol. 13232, pp. 394–406. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06430-2_33

    Chapter  Google Scholar 

  9. Pinaya, W.H.L., et al.: Unsupervised brain anomaly detection and segmentation with transformers. arXiv preprint arXiv:2102.11650(2021)

  10. Meissen, F., Kaissis, G., Rueckert, D.: Challenging current semi-supervised anomaly segmentation methods for brain MRI. In: Crimi, A., Bakas, S. (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, BrainLes 2021. Lecture Notes in Computer Science, vol. 12962, pp. 63–74. Springer, Cham (2021). https://doi.org/10.1007/978-3-031-08999-2_5

    Chapter  Google Scholar 

  11. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851 (2020)

    Google Scholar 

  12. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502 (2020)

  13. Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. In: Advances in Neural Information Processing Systems, vol. 34, pp. 8780–8794 (2021)

    Google Scholar 

  14. Wolleb, J., Bieder, F., Sandkühler, R., Cattin, P.C.: Diffusion models for medical anomaly detection. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. Lecture Notes in Computer Science, vol. 13438, pp. 35–45. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_4

    Chapter  Google Scholar 

  15. Wyatt, J., Leach, A., Schmon, S.M., Willcocks, C. G.: AnoDDPM: anomaly detection with denoising diffusion probabilistic models using simplex noise. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 650–656 (2022)

    Google Scholar 

  16. Perlin, K.: Association for computing machinery. In: SIGGRAPH (vol. 2, p. 681) (2002)

    Google Scholar 

  17. Ristea, N.C., et al.: Self-supervised predictive convolutional attentive block for anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13576–13586 (2022)

    Google Scholar 

  18. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  19. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  20. Baid, U., et al.: The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv preprint arXiv:2107.02314 (2021)

  21. Kermany, D., Zhang, K., Goldbaum, M.: Labeled optical coherence tomography (OCT) and chest X-ray images for classification. Mendeley Data 2(2), 651 (2018)

    Google Scholar 

  22. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2536–2544 (2016)

    Google Scholar 

  23. Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 146–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_12

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudipta Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, K., Chakraborty, S., Roy, S. (2023). Self-supervised Diffusion Model for Anomaly Segmentation in Medical Imaging. In: Maji, P., Huang, T., Pal, N.R., Chaudhury, S., De, R.K. (eds) Pattern Recognition and Machine Intelligence. PReMI 2023. Lecture Notes in Computer Science, vol 14301. Springer, Cham. https://doi.org/10.1007/978-3-031-45170-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45170-6_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45169-0

  • Online ISBN: 978-3-031-45170-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics