Skip to main content

Generation of Data for Training Retinal Image Segmentation Models

  • Conference paper
  • First Online:
Pattern Recognition and Machine Intelligence (PReMI 2023)

Abstract

Biomedical image segmentation requires pixel-wise labelling which is extremely time-consuming and the availability of additional training data is highly beneficial for training Deep Learning models. In addition to using Classical Image augmentation, generative adversarial networks have been used to augment the training data. This work is an investigation of the usefulness of generated medical images for Deep Learning segmentation models. An attempt has been made to create a computer-generated retinal image segmentation dataset using various state-of-the-art image generative deep learning models and use that dataset to train a supervised image segmentation model. Our experiments demonstrate that the generated data can be used successfully for medical segmentation tasks and improves the model’s performance over using classical augmentations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Han, C., et al.: GAN-based synthetic brain MR image generation. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) (2018). https://doi.org/10.1109/ISBI.2018.8363678

  2. Bowles, C., et al.: GAN augmentation: augmenting training data using generative adversarial networks (2018). https://doi.org/10.48550/arXiv.1810.10863, https://arxiv.org/abs/1810.10863

  3. Beers, A., et al.: High-resolution medical image synthesis using progressively grown generative adversarial networks (2018). https://doi.org/10.48550/arXiv.1805.03144, https://arxiv.org/abs/1805.03144

  4. Kaji, S., Kida, S.: Overview of image-to-image translation by use of deep neural networks: denoising, super-resolution, modality conversion, and reconstruction in medical imaging - radiological physics and technology (2019). https://doi.org/10.1007/s12194-019-00520-y, https://link.springer.com/article/10.1007/s12194-019-00520-y

  5. Platscher, M., Zopes, J., Federau, C.: Image translation for medical image generation: ischemic stroke lesion segmentation. Biomed. Signal Process. Control 72, 103283 (2022). https://doi.org/10.1016/j.bspc.2021.103283

    Article  Google Scholar 

  6. Yan, S., Wang, C., Chen, W., Lyu, J.: Swin transformer-based GAN for multi-modal medical image translation. Front. Oncol. 12, 942511 (2022). https://doi.org/10.3389/fonc.2022.942511

    Article  Google Scholar 

  7. Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks (2018). https://doi.org/10.48550/arXiv.1611.07004, https://arxiv.org/abs/1611.07004

  8. Mirza, M., Osindero, S.: Conditional generative adversarial nets (2014). https://doi.org/10.48550/arXiv.1411.1784, https://arxiv.org/abs/1411.1784

  9. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42, 318–327 (2020). https://doi.org/10.1109/TPAMI.2018.2858826

    Article  Google Scholar 

  10. Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 240–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_28

    Chapter  Google Scholar 

  11. Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., Aila, T.: Training generative adversarial networks with limited data (2020). https://doi.org/10.48550/arXiv.2006.06676, https://arxiv.org/abs/2006.06676

  12. Staal, J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23, 501–509 (2004). https://doi.org/10.1109/tmi.2004.825627

    Article  Google Scholar 

  13. Fraz, M.M., et al.: An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans. Biomed. Eng. 59, 2538–2548 (2012). https://doi.org/10.1109/tbme.2012.2205687

    Article  Google Scholar 

  14. Akram, M.U., Abdul Salam, A., Khawaja, S.G., Naqvi, S.G., Khan, S.A.: RIDB: a dataset of fundus images for retina based person identification. Data Brief 33, 106433 (2020). https://doi.org/10.1016/j.dib.2020.106433

    Article  Google Scholar 

  15. Kauppi, T., et al.: The DIARETDB1 diabetic retinopathy database and evaluation protocol. In: Proceedings of the British Machine Vision Conference 2007 (2007). https://doi.org/10.5244/c.21.15

  16. Budai, A., Bock, R., Maier, A., Hornegger, J., Michelson, G.: Robust vessel segmentation in fundus images. Int. J. Biomed. Imaging 2013, 1–11 (2013). https://doi.org/10.1155/2013/154860

    Article  Google Scholar 

  17. Porwal, P., et al.: Indian diabetic retinopathy image dataset (IDRiD): a database for diabetic retinopathy screening research. Data 3, 25 (2018). https://doi.org/10.3390/data3030025

    Article  Google Scholar 

  18. Farnell, D.J.J., et al.: Enhancement of blood vessels in digital fundus photographs via the application of multiscale line operators (2008). https://research.manchester.ac.uk/en/publications/enhancement-of-blood-vessels-in-digital-fundus-photographs-via-th

  19. Jin, K., et al.: FIVES: a fundus image dataset for artificial intelligence based vessel segmentation. Sci. Data 9, 475 (2022). https://doi.org/10.1038/s41597-022-01564-3

    Article  MathSciNet  Google Scholar 

  20. Hoover, A.D., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19, 203–210 (2000). https://doi.org/10.1109/42.845178

    Article  Google Scholar 

  21. Heusel, M., et al.: GANs trained by a two time-scale update rule converge to a local nash equilibrium (2019). https://arxiv.org/abs/1706.08500, https://doi.org/10.48550/arXiv.1706.08500. Accessed 12 Jan 2018

  22. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  23. Bhuiya, S., Choudhury, S.R., Aich, G., Maurya, M., Sen, A.: Retinal blood vessel segmentation and analysis using lightweight spatial attention based CNN and data augmentation. In: 2022 IEEE Calcutta Conference (CALCON) (2022). https://doi.org/10.1109/CALCON56258.2022.10060189

  24. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Computer Vision - ECCV 2018, pp. 3–19 (2018). https://doi.org/10.1007/978-3-030-01234-2_1

  25. Alom, M.Z., Hasan, M., Yakopcic, C., Taha, T.M., Asari, V.K.: Recurrent residual convolutional neural network based on U-net (R2U-net) for medical image segmentation (2018). https://doi.org/10.48550/arXiv.1802.06955

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinjoy Bhuiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhuiya, S., Chakraborty, S., Sadhukhan, S., Mandal, D.P., Bhandari, D. (2023). Generation of Data for Training Retinal Image Segmentation Models. In: Maji, P., Huang, T., Pal, N.R., Chaudhury, S., De, R.K. (eds) Pattern Recognition and Machine Intelligence. PReMI 2023. Lecture Notes in Computer Science, vol 14301. Springer, Cham. https://doi.org/10.1007/978-3-031-45170-6_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45170-6_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45169-0

  • Online ISBN: 978-3-031-45170-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics