Skip to main content

Scene Estimation for Making Active Decisions

  • Conference paper
  • First Online:
Pattern Recognition and Machine Intelligence (PReMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14301))

  • 578 Accesses

Abstract

Scene estimation problem has been examined along with the structural description of differents objects in the scene. The data structure of scenes is established through a tree structure. This uses depths of different objects in the scene. Depth map is computed using Horn’s reflectance map and Shah’s linearization technique of the reflectance map. The center of mass is considered for the localized rectangle of each object to define the hierarchy of objects present in the scene. The localization of objects is based on least square estimation technique on YOLO output images. The localization method is fully free from any kind of thresholds and is a new concept. Comparison with other methods shows our method is more effective. Finding the structural description is also a new scheme. The nearness of objects at different levels of the hierarchical tree for the scene is based on some weights that help for making active decisions on the positions of objects relative to the camera observer. Finally, some applications shows the merits of the proposed scheme in some details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moitra, S., Biswas, S.: Object detection in images: a survey. Int. J. Sci. Res. (IJSR) 12(4), 10–29 (2023)

    Article  Google Scholar 

  2. Hosang, J., Benenson, R., Schiele, B.: Learning non-maximum suppression (2017)

    Google Scholar 

  3. Moitra, S., Biswas, S.: Human interaction-free object localization in a scene. In: 2023 International Conference on Computer, Electrical & Communication Engineering (ICCECE), pp. 1–5 (2023)

    Google Scholar 

  4. Mahendru, K.: How to determine the optimal k for k-means? (2019)

    Google Scholar 

  5. Horn, B., Brooks, M.: Shape from Shading, vol. 2 (1989)

    Google Scholar 

  6. Ping-Sing, T., Shah, M.: Shape from shading using linear approximation. Image Vis. Comput. 12(8), 487–498 (1994)

    Article  Google Scholar 

  7. Elhabian, S.Y.: Hands on shape from shading (2008)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Techno India University, West Bengal for its support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sambhunath Biswas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Biswas, S., Moitra, S. (2023). Scene Estimation for Making Active Decisions. In: Maji, P., Huang, T., Pal, N.R., Chaudhury, S., De, R.K. (eds) Pattern Recognition and Machine Intelligence. PReMI 2023. Lecture Notes in Computer Science, vol 14301. Springer, Cham. https://doi.org/10.1007/978-3-031-45170-6_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45170-6_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45169-0

  • Online ISBN: 978-3-031-45170-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics