Skip to main content

Audio Fingerprinting System to Detect and Match Audio Recordings

  • Conference paper
  • First Online:
Pattern Recognition and Machine Intelligence (PReMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14301))

  • 593 Accesses

Abstract

The emergence of a sizable volume of audio data has increased the requirement for audio retrieval, which can identify the required information rapidly and reliably. Audio fingerprint retrieval is a preferable substitute due to its improved performance. The task of song identification from an audio recording has been an ongoing research problem in the field of music information retrieval. This work presents a robust and efficient audio fingerprinting method for song detection. This approach for the proposed system utilizes a combination of spectral and temporal features extracted from the audio signal to generate a compact and unique fingerprint for each song. A matching algorithm is then used to compare the fingerprint of the query recording to those in a reference database and identify the closest match. The system is evaluated on a diverse dataset of commercial songs and a standardized dataset. The results demonstrate the superior identification accuracy of the proposed method compared to existing approaches on a standardized dataset. Additionally, the method shows comparable identification performance for recordings, particularly for shorter segments of 1 s, with an improvement in accuracy by 14%. Moreover, the proposed method achieves a reduction in storage space by 10% in terms of the number of fingerprints required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Defferrard, M., Benzi, K., Vandergheynst, P., Bresson, X.: FMA: a dataset for music analysis. In: 18th International Society for Music Information Retrieval Conference (ISMIR), pp. 1–8. Paris, France (2017)

    Google Scholar 

  2. Drevo, W.: Dejavu: Open-source audiofingerprinting project (2014). https://github.com/worldveil/dejavu. Accessed 10 Aug 2023

  3. Gupta, A., Rahman, A., Yasmin, G.: Audio fingerprinting using high-level feature extraction. In: Das, A.K., Nayak, J., Naik, B., Dutta, S., Pelusi, D. (eds.) Computational Intelligence in Pattern Recognition. AISC, vol. 1349, pp. 281–291. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-2543-5_24

    Chapter  Google Scholar 

  4. Haitsma, J., Kalker, T.: A highly robust audio fingerprinting system. In: International Conference on Music Information Retrieval (ISMIR), vol. 2002, pp. 107–115. Paris, France (2002)

    Google Scholar 

  5. Jiang, Y., Wu, C., Deng, K., Wu, Y.: An audio fingerprinting extraction algorithm based on lifting wavelet packet and improved optimal-basis selection. Multimedia Tools Appl. 78, 30011–30025 (2019)

    Article  Google Scholar 

  6. Li, T., Jia, M., Cao, X.: A hierarchical retrieval method based on hash table for audio fingerprinting. In: Huang, D.-S., Jo, K.-H., Li, J., Gribova, V., Bevilacqua, V. (eds.) ICIC 2021. LNCS, vol. 12836, pp. 160–174. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84522-3_13

    Chapter  Google Scholar 

  7. Malekesmaeili, M., Ward, R.K.: A local fingerprinting approach for audio copy detection. Signal Process. 98, 308–321 (2014)

    Article  Google Scholar 

  8. Mehmood, Z., Ashfaq Qazi, K., Tahir, M., Muhammad Yousaf, R., Sardaraz, M.: Potential barriers to music fingerprinting algorithms in the presence of background noise. In: 6th Conference on Data Science and Machine Learning Applications (CDMA), pp. 25–30. Riyadh, Saudi Arabia (2020)

    Google Scholar 

  9. Son, H.S., Byun, S.W., Lee, S.P.: A robust audio fingerprinting using a new hashing method. IEEE Access 8, 172343–172351 (2020)

    Article  Google Scholar 

  10. Sonnleitner, R., Arzt, A., Widmer, G.: Landmark-based audio fingerprinting for DJ mix monitoring. In: International Society for Music Information Retrieval Conference (ISMIR), pp. 185–191. New York City, USA (2016)

    Google Scholar 

  11. Wang, A.: An industrial strength audio search algorithm. In: 4th International Conference on Music Information Retrieval (ISMIR), pp. 1–7 Barcelona, Spain (2003)

    Google Scholar 

  12. Weik, M.H.: Nyquist Theorem, pp. 1127–1127. Springer, Boston (2001)

    Google Scholar 

  13. Yang, G., Chen, X., Yang, D.: Efficient music identification by utilizing space-saving audio fingerprinting system. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. Chengdu, China (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spoorthy Venkatesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kishor, K., Venkatesh, S., Koolagudi, S.G. (2023). Audio Fingerprinting System to Detect and Match Audio Recordings. In: Maji, P., Huang, T., Pal, N.R., Chaudhury, S., De, R.K. (eds) Pattern Recognition and Machine Intelligence. PReMI 2023. Lecture Notes in Computer Science, vol 14301. Springer, Cham. https://doi.org/10.1007/978-3-031-45170-6_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45170-6_71

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45169-0

  • Online ISBN: 978-3-031-45170-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics