Skip to main content

MuOE: A Multi-task Ordinality Aware Approach Towards Engagement Detection

  • Conference paper
  • First Online:
Pattern Recognition and Machine Intelligence (PReMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14301))

  • 585 Accesses

Abstract

With the increasing adoption of online learning, decreasing student engagement is becoming rampant. Detecting this is the first step in making online education more viable and effective. We present MuOE, a Multi-task Ordinality-aware Engagement detection model to identify attention levels from students’ webcam videos. MuOE uses a transformer with exceptional sequence-processing capability and a novel selector-based attention mechanism that picks important video frames. Facial cue detection is used as an auxillary task in our multi-task formulation of the problem, so the shared model base has more supervision. We leverage the ordinal nature of engagement levels by introducing a smooth loss function that penalizes predictions based on closeness to the true label. In this paper, we motivate each component of MuOE, and demonstrate its utility through a set of quantative experiments. We achieve a state-of-the-art accuracy of 57.65% (Top-2 accuracy 95.07%) on the DAiSEE dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We refrain from including Facial Action Units to avoid information leaking to the auxiliary task of predicting regressive action units.

References

  1. Abedi, A., Khan, S.S.: Improving state-of-the-art in detecting student engagement with ResNet and TCN hybrid network. In: 2021 18th Conference on Robots and Vision (2021)

    Google Scholar 

  2. Baltrusaitis, T., Zadeh, A., Lim, Y.C., Morency, L.P.: Openface 2.0: facial behavior analysis toolkit. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 59–66. IEEE (2018)

    Google Scholar 

  3. Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: Vggface2: a dataset for recognising faces across pose and age. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 67–74. IEEE (2018)

    Google Scholar 

  4. Collobert, R., Weston, J.: A unified architecture for natural language processing: deep neural networks with multitask learning. In: 25th ICML, pp. 160–167 (2008)

    Google Scholar 

  5. Dhall, A., Sharma, G., Goecke, R., Gedeon, T.: Emotiw 2020: driver gaze, group emotion, student engagement and physiological signal based challenges. In: Proceedings of the 2020 International Conference on Multimodal Interaction (2020)

    Google Scholar 

  6. Donahue, J., et al.: Long-term recurrent convolutional networks for visual recognition and description. In: IEEE CVPR (2015)

    Google Scholar 

  7. Ekman, P., Friesen, W.V.: Facial action coding system. Environ. Psychol. Nonverbal Behav. (1978)

    Google Scholar 

  8. Fu, H., Gong, M., Wang, C., Batmanghelich, K., Tao, D.: Deep ordinal regression network for monocular depth estimation. In: IEEE CVPR (2018)

    Google Scholar 

  9. Gupta, A., Jaiswal, R., Adhikari, S., Balasubramanian, V.: DAISEE: dataset for affective states in e-learning environments. CoRR abs/1609.01885 (2016)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

    Google Scholar 

  11. Khedher, A.B., Jraidi, I., Frasson, C., et al.: Tracking students’ mental engagement using EEG signals during an interaction with a virtual learning environment. J. Intell. Learn. Syst. Appl. 11(01), 1–14 (2019)

    Google Scholar 

  12. Liao, J., Liang, Y., Pan, J.: Deep facial spatiotemporal network for engagement prediction in online learning. Appl. Intell. 51(10), 6609–6621 (2021)

    Article  Google Scholar 

  13. Mao, C., et al.: Multitask learning strengthens adversarial robustness. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 158–174. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_10

    Chapter  Google Scholar 

  14. Rothkrantz, L.: Dropout rates of regular courses and MOOCs. In: Costagliola, G., Uhomoibhi, J., Zvacek, S., McLaren, B.M. (eds.) CSEDU 2016. CCIS, vol. 739, pp. 25–46. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63184-4_3

    Chapter  Google Scholar 

  15. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  16. Sun, B.Y., Li, J., Wu, D.D., Zhang, X.M., Li, W.B.: Kernel discriminant learning for ordinal regression. IEEE Trans. KDE 22(6), 906–910 (2009)

    Google Scholar 

  17. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3d convolutional networks. In: IEEE ICCV (2015)

    Google Scholar 

  18. Vaswani, A., et al.: Attention is all you need. In: Advances in NIPS, vol. 30 (2017)

    Google Scholar 

  19. Wen, Y., Zhang, K., Li, Z., Qiao, Yu.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_31

    Chapter  Google Scholar 

  20. Whitehill, J., Serpell, Z., Lin, Y.C., Foster, A., Movellan, J.R.: The faces of engagement: automatic recognition of student engagement from facial expressions. IEEE Trans. Affect. Comput. 5(1), 86–98 (2014)

    Article  Google Scholar 

  21. Zhang, H., Xiao, X., Huang, T., Liu, S., Xia, Y., Li, J.: An novel end-to-end network for automatic student engagement recognition. In: 2019 IEEE 9th International Conference on Electronics Information and Emergency Communication (ICEIEC) (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saumya Gandhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gandhi, S., Fadia, A., Agrawal, R., Agrawal, S., Kumar, P. (2023). MuOE: A Multi-task Ordinality Aware Approach Towards Engagement Detection. In: Maji, P., Huang, T., Pal, N.R., Chaudhury, S., De, R.K. (eds) Pattern Recognition and Machine Intelligence. PReMI 2023. Lecture Notes in Computer Science, vol 14301. Springer, Cham. https://doi.org/10.1007/978-3-031-45170-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45170-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45169-0

  • Online ISBN: 978-3-031-45170-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics