Skip to main content

De-identification and Obfuscation of Gender Attributes from Retinal Scans

  • Conference paper
  • First Online:
Clinical Image-Based Procedures, Fairness of AI in Medical Imaging, and Ethical and Philosophical Issues in Medical Imaging (CLIP 2023, EPIMI 2023, FAIMI 2023)

Abstract

Retina images are considered to be important biomarkers and have been used as clinical diagnostic tools to detect multiple diseases. We examine multiple techniques for de-identifying retina images while maintaining their clinical ability for detecting diabetic retinopathy (DR), using gender as a proxy for identifiability. We apply two differential privacy algorithms, Snow and VS-Snow, on the entire image (globally) and on blood vessels only (locally) to obfuscate important image features that can predict a patient’s sex. We evaluate the level of privacy and retained clinical predictive power of these de-identified images by using attacking gender classifier models and downstream disease classifiers. We show empirically that our proposed VS-Snow framework achieves strong privacy while preserving a meaningful clinical predictive power across different patient populations.

C. Wu and X. Yang—These authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 27 November 2023

    A correction has been published.

References

  1. Ataş, I.: Human gender prediction based on deep transfer learning from panoramic dental radiograph images. Traitement du Signal 39(5), 1585 (2022)

    Article  Google Scholar 

  2. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)

    Google Scholar 

  3. Goldberger, A., et al.: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation [Online] 101(23), E215–E220 (2000). https://doi.org/10.1161/01.cir.101.23.e215

    Article  Google Scholar 

  4. Gulshan, V., et al.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22), 2402–2410 (2016). https://doi.org/10.1001/jama.2016.17216

    Article  Google Scholar 

  5. He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., Li, M.: Bag of tricks for image classification with convolutional neural networks (2018)

    Google Scholar 

  6. John, B., Liu, A., Xia, L., Koppal, S., Jain, E.: Let it snow: adding pixel noise to protect the user’s identity. In: ACM Symposium on Eye Tracking Research and Applications. ETRA 2020 Adjunct, New York, NY, USA. Association for Computing Machinery (2020). https://doi.org/10.1145/3379157.3390512

  7. Kim, Y.D., et al.: Effects of hypertension, diabetes, and smoking on age and sex prediction from retinal fundus images. Sci. Rep. 10, 4623 (2020). https://doi.org/10.1038/s41598-020-61519-9

    Article  Google Scholar 

  8. Korot, E., et al.: Predicting sex from retinal fundus photographs using automated deep learning. Sci. Rep. 11, 10286 (2021). https://doi.org/10.1038/s41598-021-89743-x

    Article  Google Scholar 

  9. Larrazabal, A.J., Nieto, N., Peterson, V., Milone, D.H., Ferrante, E.: Gender imbalance in medical imaging datasets produces biased classifiers for computer-aided diagnosis. Proc. Natl. Acad. Sci. 117(23), 12592–12594 (2020)

    Article  Google Scholar 

  10. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection (2018)

    Google Scholar 

  11. Liu, W., et al.: Full-resolution network and dual-threshold iteration for retinal vessel and coronary angiograph segmentation. IEEE J. Biomed. Health Inform. 26(9), 4623–4634 (2022). https://doi.org/10.1109/JBHI.2022.3188710

    Article  Google Scholar 

  12. Liu, X., et al.: Deep learning to detect oct-derived diabetic macular edema from color retinal photographs: a multicenter validation study. Ophthalmol. Retina 6(5), 398–410 (2022). https://doi.org/10.1016/j.oret.2021.12.021

    Article  MathSciNet  Google Scholar 

  13. Munk, M.R., Kurmann, T., Márquez-Neila, P., Zinkernagel, M.S., Wolf, S., Sznitman, R.: Assessment of patient specific information in the wild on fundus photography and optical coherence tomography. Sci. Rep. 11, 8621 (2021). https://doi.org/10.1038/s41598-021-86577-5

    Article  Google Scholar 

  14. Nakayama, L.F., et al.: A Brazilian multilabel ophthalmological dataset (brset) (2023). https://doi.org/10.13026/xcxw-8198

  15. Poplin, R., et al.: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat. Biomed. Eng. 2, 158–164 (2018). https://doi.org/10.1038/s41551-018-0195-0

    Article  Google Scholar 

  16. Ruamviboonsuk, P., et al.: Deep learning versus human graders for classifying diabetic retinopathy severity in a nationwide screening program. NPJ Dig. Med. 2, 25 (2019). https://doi.org/10.1038/s41746-019-0099-8

    Article  Google Scholar 

  17. Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  18. Ting, D.S.W., et al.: Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 318(22), 2211–2223 (2017). https://doi.org/10.1001/jama.2017.18152

    Article  Google Scholar 

  19. Yala, A., et al.: Syfer: neural obfuscation for private data release. arXiv preprint arXiv:2201.12406 (2022)

  20. Yu, Y., Lin, H., Meng, J., Wei, X., Guo, H., Zhao, Z.: Deep transfer learning for modality classification of medical images. Information 8(3) (2017). https://doi.org/10.3390/info8030091, https://www.mdpi.com/2078-2489/8/3/91

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenwei Wu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 950 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, C. et al. (2023). De-identification and Obfuscation of Gender Attributes from Retinal Scans. In: Wesarg, S., et al. Clinical Image-Based Procedures, Fairness of AI in Medical Imaging, and Ethical and Philosophical Issues in Medical Imaging. CLIP EPIMI FAIMI 2023 2023 2023. Lecture Notes in Computer Science, vol 14242. Springer, Cham. https://doi.org/10.1007/978-3-031-45249-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45249-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45248-2

  • Online ISBN: 978-3-031-45249-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics