Skip to main content

Probabilistic Scoring Lists for Interpretable Machine Learning

  • Conference paper
  • First Online:
Discovery Science (DS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14276))

Included in the following conference series:

Abstract

A scoring system is a simple decision model that checks a set of features, adds a certain number of points to a total score for each feature that is satisfied, and finally makes a decision by comparing the total score to a threshold. Scoring systems have a long history of active use in safety-critical domains such as healthcare and justice, where they provide guidance for making objective and accurate decisions. Given their genuine interpretability, the idea of learning scoring systems from data is obviously appealing from the perspective of explainable AI. In this paper, we propose a practically motivated extension of scoring systems called probabilistic scoring lists (PSL), as well as a method for learning PSLs from data. Instead of making a deterministic decision, a PSL represents uncertainty in the form of probability distributions. Moreover, in the spirit of decision lists, a PSL evaluates features one by one and stops as soon as a decision can be made with enough confidence. To evaluate our approach, we conduct a case study in the medical domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(\llbracket P \rrbracket = 1\) if predicate P is true (positive decision) and \(\llbracket P \rrbracket = 0\) if P is false (negative decision).

  2. 2.

    As the importance of a feature \(x_k\), and hence the score \(s_k\), can only be decided relative to other features, the choice of the score for the first feature is ambiguous; assuming this feature to be important, we given it the largest score possible.

  3. 3.

    https://www.mdcalc.com/calc/4022/marburg-heart-score-mhs.

References

  • Bösner, S., et al.: Accuracy of symptoms and signs for coronary heart disease assessed in primary care. Br. J. Gener. Pract. 60(575), e246–e257 (2010)

    Article  Google Scholar 

  • Chevaleyre, Y., Koriche, F., Zucker, J.D.: Rounding methods for discrete linear classification. In: Proceedings of ICML, International Conference on Machine Learning, pp. 651–659 (2013)

    Google Scholar 

  • Foygel Barber, R., Candes, J., Emmanuel, J., Ramdas, A., Tibshirani, R.J.: The limits of distribution-free conditional predictive inference. Inf. Inference 10(2), 455–482 (2021). https://doi.org/10.1093/imaiai/iaaa017

    Article  MathSciNet  MATH  Google Scholar 

  • Fürnkranz, J.: Separate-and-conquer rule learning. Artif. Intell. Rev. 13(1), 3–54 (1999)

    Article  MATH  Google Scholar 

  • Fürnkranz, J., Gamberger, D., Lavrač, N.: Foundations of Rule Learning. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-540-75197-7. ISBN 978-3-540-75196-0

    Book  MATH  Google Scholar 

  • Hastie, T.J.: Generalized Additive Models. Routledge (2017)

    Google Scholar 

  • Hüllermeier, E., Waegeman, W.: Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods. Mach. Learn. 110(3), 457–506 (2021). https://doi.org/10.1007/s10994-021-05946-3

    Article  MathSciNet  MATH  Google Scholar 

  • Kull, M., Silva Filho, T., Flach, P.: Beta calibration: a well-founded and easily implemented improvement on logistic calibration for binary classifiers. In: Proceedings of AISTATS, 20th International Conference on Artificial Intelligence and Statistics, vol. 54, pp. 623–631. PMLR (2017)

    Google Scholar 

  • Moreira, J., Bisig, B., Muwawenimana, P., Basinga, P., Bisoffi, Z., Haegeman, F.: Weighing harm in therapeutic decisions of smear-negative pulmonary tuberculosis. Med. Decis. Making 3, 380–390 (2009)

    Article  Google Scholar 

  • Možina, M., Demšar, J., Bratko, I., Žabkar, J.: Extreme value correction: a method for correcting optimistic estimations in rule learning. Mach. Learn. 108(2), 297–329 (2018). https://doi.org/10.1007/s10994-018-5731-3

    Article  MathSciNet  MATH  Google Scholar 

  • Niculescu-Mizil, A., Caruana, R.: Predicting good probabilities with supervised learning. In: Proceedings of ICML, 22nd International Conference on Machine Learning, New York, USA, pp. 625–632 (2005)

    Google Scholar 

  • Provost, F.J., Domingos, P.: Tree induction for probability-based ranking. Mach. Learn. 52(3), 199–215 (2003)

    Article  MATH  Google Scholar 

  • Rivest, R.L.: Learning decision lists. Mach. Learn. 2, 229–246 (1987)

    Article  Google Scholar 

  • Senge, R., et al.: Reliable classification: learning classifiers that distinguish aleatoric and epistemic uncertainty. Inf. Sci. 255, 16–29 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Silva Filho, T., Song, H., Perelló-Nieto, M., Santos-Rodríguez, R., Kull, M., Flach, P.A.: Classifier calibration: how to assess and improve predicted class probabilities: a survey. CoRR, abs/2112.10327 (2021). https://arxiv.org/abs/2112.10327

  • Simsek, O., Buckmann, M.: On learning decision heuristics. In: Imperfect Decision Makers: Admitting Real-World Rationality, pp. 75–85 (2017)

    Google Scholar 

  • Six, A., Backus, B., Kelder, J.: Chest pain in the emergency room: value of the heart score. Neth. Hear. J. 16(6), 191–196 (2008)

    Article  Google Scholar 

  • Subramanian, V., Mascha, E.J., Kattan, M.W.: Developing a clinical prediction score: comparing prediction accuracy of integer scores to statistical regression models. Anesth. Analg. 132(6), 1603–1613 (2021)

    Article  Google Scholar 

  • Sulzmann, J.-N., Fürnkranz, J.: An empirical comparison of probability estimation techniques for probabilistic rules. In: Gama, J., Costa, V.S., Jorge, A.M., Brazdil, P.B. (eds.) DS 2009. LNCS, vol. 5808, pp. 317–331. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04747-3_25

    Chapter  Google Scholar 

  • Tsalatsanis, A., Hozo, I., Vickers, A., Djulbegovic, B.: A regret theory approach to decision curve analysis: a novel method for eliciting decision makers’ preferences and decision-making. BMC Med. Inform. Decis. Mak. 10, 51 (2010). https://doi.org/10.1186/1472-6947-10-51

    Article  Google Scholar 

  • Ustun, B., Rudin, C.: Supersparse linear integer models for optimized medical scoring systems. Mach. Learn. 102(3), 349–391 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Ustun, B., Rudin, C.: Optimized risk scores. In: Proceedings of 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1125–1134 (2017)

    Google Scholar 

  • Ustun, B., Rudin, C.: Learning optimized risk scores. J. Mach. Learn. Res. 20(150), 1–75 (2019)

    MathSciNet  MATH  Google Scholar 

  • Vovk, V., Petej, I.: Venn-Abers predictors. In: Proceedings of UAI, 30th Conference on Uncertainty in Artificial Intelligence (2014)

    Google Scholar 

  • Vovk, V., Shafer, G., Nouretdinov, I.: Self-calibrating probability forecasting. In: Proceedings of NIPS, Advances in Neural Information Processing Systems, vol. 16, pp. 1133–1140 (2004)

    Google Scholar 

  • Wang, C., Han, B., Patel, B., Rudin, C.: In pursuit of interpretable, fair and accurate machine learning for criminal recidivism prediction. J. Quant. Criminol. 39, 1–63 (2022)

    Google Scholar 

  • Webb, G.I.: Recent progress in learning decision lists by prepending inferred rules. In: Proceedings of the 2nd Singapore International Conference on Intelligent Systems, pp. B280–B285 (1994)

    Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge funding by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG): TRR 318/1 2021 – 438445824 and the German Research Foundation (DFG) within the Collaborative Research Center “On-The-Fly Computing” (SFB 901/3 project no. 160364472).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Hanselle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hanselle, J., Fürnkranz, J., Hüllermeier, E. (2023). Probabilistic Scoring Lists for Interpretable Machine Learning. In: Bifet, A., Lorena, A.C., Ribeiro, R.P., Gama, J., Abreu, P.H. (eds) Discovery Science. DS 2023. Lecture Notes in Computer Science(), vol 14276. Springer, Cham. https://doi.org/10.1007/978-3-031-45275-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45275-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45274-1

  • Online ISBN: 978-3-031-45275-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics