Skip to main content

Joining Imputation and Active Feature Acquisition for Cost Saving on Data Streams with Missing Features

  • Conference paper
  • First Online:
Discovery Science (DS 2023)

Abstract

Replacing missing features in data streams is an important task in order to enable many machine learning algorithms that require feature-complete instances for training and prediction. Two popular methods for dealing with missing features are imputation and active feature acquisition, where in the former missing values are approximated, whereas in the latter, missing features are provided by an expert for a cost and within a limited budget. In this work, we present a hybridized approach, where we employ an active feature acquisition method in the first stage to pick candidate features on which we would require a costly expert and then check in a second stage how well we could impute these candidate features. If the imputation is expected to be of a certain quality, we skip the purchase and impute instead. We provide a framework for such a scenario and used it to run extensive experiments. Our results on 6 data sets show that our proposed method can achieve a similar classification performance while spending 1% to 27% less budget.

Shared first author position.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/Buettner-Maik/caafa-stream.

References

  1. Adhikari, D., et al.: A comprehensive survey on imputation of missing data in internet of things. ACM Comput. Surv. 55(7), 77–114 (2022)

    Google Scholar 

  2. Beyer, C., Büttner, M., Unnikrishnan, V., Schleicher, M., Ntoutsi, E., Spiliopoulou, M.: Active feature acquisition on data streams under feature drift. Ann. Telecommun. 75, 597–611 (2020)

    Article  Google Scholar 

  3. Büttner, M., Beyer, C., Spiliopoulou, M.: Reducing missingness in a stream through cost-aware active feature acquisition. In: 2022 IEEE 9th International Conference on Data Science and Advanced Analytics (DSAA), pp. 1–10 (2022)

    Google Scholar 

  4. Dong, W., Gao, S., Yang, X., Yu, H.: An exploration of online missing value imputation in non-stationary data stream. SN Comput. Sci. 2, 1–11 (2021)

    Article  Google Scholar 

  5. Dua, D., Graff, C.: UCI machine learning repository (2017)

    Google Scholar 

  6. Gama, J., Sebastiao, R., Rodrigues, P.P.: On evaluating stream learning algorithms. Mach. Learn. 90, 317–346 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gomes, H.M., de Mello, R.F., Pfahringer, B., Bifet, A.: Feature scoring using tree-based ensembles for evolving data streams. In: 2019 IEEE International Conference on Big Data (Big Data), pp. 761–769. IEEE (2019)

    Google Scholar 

  8. Hallaji, E., Razavi-Far, R., Saif, M.: DLIN: deep ladder imputation network. IEEE Trans. Cybern. 52(9), 8629–8641 (2021)

    Article  Google Scholar 

  9. Herbold, S.: Autorank: a python package for automated ranking of classifiers. J. Open Source Softw. 5(48), 2173 (2020)

    Article  Google Scholar 

  10. Huang, S.J., Xu, M., Xie, M.K., Sugiyama, M., Niu, G., Chen, S.: Active feature acquisition with supervised matrix completion (2018)

    Google Scholar 

  11. Kachuee, M., Goldstein, O., Kärkkäinen, K., Darabi, S., Sarrafzadeh, M.: Opportunistic learning: budgeted cost-sensitive learning from data streams. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. OpenReview.net (2019)

    Google Scholar 

  12. Keerin, P., Boongoen, T.: Improved KNN imputation for missing values in gene expression data. Comput. Mater. Contin. 70(2), 4009–4025 (2021)

    Google Scholar 

  13. Kottke, D.: Budget Optimization for Active Learning in Data Streams. Master’s thesis, Otto von Guericke University Magdeburg, Germany (10 2014)

    Google Scholar 

  14. Li, Y., Oliva, J.: Active feature acquisition with generative surrogate models. In: International Conference on Machine Learning, pp. 6450–6459. PMLR (2021)

    Google Scholar 

  15. Lin, W.C., Tsai, C.F.: Missing value imputation: a review and analysis of the literature (2006–2017). Artif. Intell. Rev. 53, 1487–1509 (2020)

    Article  Google Scholar 

  16. Melville, P., Saar-Tsechansky, M., Provost, F., Mooney, R.: Active feature-value acquisition for classifier induction. In: Fourth IEEE International Conference on Data Mining (ICDM’04), pp. 483–486. IEEE (2004)

    Google Scholar 

  17. Peng, T., Sellami, S., Boucelma, O.: IoT data imputation with incremental multiple linear regression. Open J. Internet Things (OJIOT) 5(1), 69–79 (2019)

    Google Scholar 

  18. Ramanan, N., Odom, P., Kersting, K., Natarajan, S.: Active feature acquisition via human interaction in relational domains. In: Proceedings of the 6th Joint International Conference on Data Science & Management of Data (10th ACM IKDD CODS and 28th COMAD), pp. 70–78. Association for Computing Machinery, New York, NY, USA (2023)

    Google Scholar 

  19. Saar-Tsechansky, M., Melville, P., Provost, F.J.: Active feature-value acquisition. Manag. Sci. 55(4), 664–684 (2009)

    Article  Google Scholar 

  20. Settles, B.: Active learning literature survey. Technical report 1648, University of Wisconsin-Madison Department of Computer Sciences (2009)

    Google Scholar 

  21. Shim, H., Hwang, S.J., Yang, E.: Joint active feature acquisition and classification with variable-size set encoding. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 31. Curran Associates, Inc. (2018)

    Google Scholar 

  22. Tharwat, A., Schenck, W.: A survey on active learning: state-of-the-art, practical challenges and research directions. Mathematics 11(4) (2023)

    Google Scholar 

  23. Yuan, L., Pfahringer, B., Barddal, J.P.: Iterative subset selection for feature drifting data streams. In: Proceedings of the 33rd Annual ACM Symposium on Applied Computing, SAC 2018, Pau, France, 09–13 April 2018, pp. 510–517 (2018)

    Google Scholar 

  24. Zhang, P., Zhu, X., Tan, J., Guo, L.: SKIF: a data imputation framework for concept drifting data streams. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, pp. 1869–1872 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maik Büttner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Büttner, M., Beyer, C., Spiliopoulou, M. (2023). Joining Imputation and Active Feature Acquisition for Cost Saving on Data Streams with Missing Features. In: Bifet, A., Lorena, A.C., Ribeiro, R.P., Gama, J., Abreu, P.H. (eds) Discovery Science. DS 2023. Lecture Notes in Computer Science(), vol 14276. Springer, Cham. https://doi.org/10.1007/978-3-031-45275-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45275-8_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45274-1

  • Online ISBN: 978-3-031-45275-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics