Skip to main content

Privacy-Preserving Learning of Random Forests Without Revealing the Trees

  • Conference paper
  • First Online:
Discovery Science (DS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14276))

Included in the following conference series:

  • 523 Accesses

Abstract

The paper presents a method for the privacy-preserving learning of random forests from private data of three parties, where not even the decision trees, i.e., neither the tree structures nor their parameters (the annotations of attributes and attribute values), are disclosed to any of the parties. To make this practical for realistically size data, a custom protocol is needed for the private comparison of two numbers, such that the numbers themselves are only available in shares and are not known to either party. Experiments with five datasets indicate that the overall protocol matches classical random forests in accuracy and can handle datasets of realistic size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Notice that we follow the original definition of random forests by Breiman (2001).

  2. 2.

    http://archive.ics.uci.edu/ml.

  3. 3.

    https://websockets.readthedocs.io/en/stable/.

References

  1. Akavia, A., Leibovich, M., Resheff, Y.S., Ron, R., Shahar, M., Vald, M.: Privacy-preserving decision trees training and prediction. Cryptology ePrint Archive, Paper 2021/768 (2021). https://eprint.iacr.org/2021/768

  2. Althaus, E., Dousti, M.S., Kramer, S., Rassau, N.J.P.: Fast private parameter learning and evaluation for sum-product networks. CoRR abs/2104.07353 (2021). https://arxiv.org/abs/2104.07353

  3. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-honest secure three-party computation with an honest majority. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 805–817. Association for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2976749.2978331

  4. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  5. Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptol. 13(1), 143–202 (2000). https://doi.org/10.1007/s001459910006

    Article  MathSciNet  MATH  Google Scholar 

  6. Du, W., Zhan, Z.: Building decision tree classifier on private data. In: Proceedings of the IEEE International Conference on Privacy, Security and Data Mining, vol. 14, pp. 1–8. Australian Computer Society Inc. (2002)

    Google Scholar 

  7. Emekci, F., Sahin, O., Agrawal, D., El Abbadi, A.: Privacy preserving decision tree learning over multiple parties. Data Knowl. Eng. 63(2), 348–361 (2007). https://www.sciencedirect.com/science/article/pii/S0169023X07000365

  8. Giacomelli, I., Jha, S., Joye, M., Page, C.D., Yoon, K.: Privacy-preserving ridge regression over distributed data from lhe. Cryptology ePrint Archive, Report 2017/979 (2017). https://eprint.iacr.org/2017/979

  9. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp. 218–229. Association for Computing Machinery, New York, NY, USA (1987). https://doi.org/10.1145/28395.28420

  10. Goldreich, O.: Foundations of Cryptography - Basic Applications, vol. 2. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  11. de Hoogh, S., Schoenmakers, B., Chen, P., op den Akker, H.: Practical secure decision tree learning in a teletreatment application. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 179–194. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5_12

    Chapter  Google Scholar 

  12. Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6_3

    Chapter  Google Scholar 

  13. Mohassel, P., Rindal, P.: Aby 3: a mixed protocol framework for machine learning. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 35–52, October 2018

    Google Scholar 

  14. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving machine learning. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 19–38 (2017). https://doi.org/10.1109/SP.2017.12

  15. Nikolaenko, V., Weinsberg, U., Ioannidis, S., Joye, M., Boneh, D., Taft, N.: Privacy-preserving ridge regression on hundreds of millions of records. In: 2013 IEEE Symposium on Security and Privacy, pp. 334–348 (2013). https://doi.org/10.1109/SP.2013.30

  16. Riazi, M.S., Weinert, C., Tkachenko, O., Songhori, E.M., Schneider, T., Koushanfar, F.: Chameleon: a hybrid secure computation framework for machine learning applications. CoRR abs/1801.03239 (2018). http://arxiv.org/abs/1801.03239

  17. Samet, S., Miri, A.: Privacy preserving ID3 using Gini index over horizontally partitioned data. In: 2008 IEEE/ACS International Conference on Computer Systems and Applications, pp. 645–651 (2008). https://doi.org/10.1109/AICCSA.2008.4493598

  18. Scikit-learn: random forest classifier. https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

  19. Vaidya, J., Clifton, C., Kantarcioglu, M., Patterson, A.S.: Privacy-preserving decision trees over vertically partitioned data 2(3) (2008). https://doi.org/10.1145/1409620.1409624

  20. Wang, K., Xu, Y., She, R., Yu, P.S.: Classification spanning private databases. In: Proceedings of the 21st National Conference on Artificial Intelligence, vol. 1, p. 293–298. AAAI’06, AAAI Press (2006)

    Google Scholar 

  21. Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, pp. 160–164. IEEE Computer Society, USA (1982)

    Google Scholar 

Download references

Acknowledgements

This work was partly funded by the Carl-Zeiss-Stiftung as part of the CZS Durchbrueche project under grant number [P2021-02-014].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Kramer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bammert, LM., Kramer, S., Cerrato, M., Althaus, E. (2023). Privacy-Preserving Learning of Random Forests Without Revealing the Trees. In: Bifet, A., Lorena, A.C., Ribeiro, R.P., Gama, J., Abreu, P.H. (eds) Discovery Science. DS 2023. Lecture Notes in Computer Science(), vol 14276. Springer, Cham. https://doi.org/10.1007/978-3-031-45275-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45275-8_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45274-1

  • Online ISBN: 978-3-031-45275-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics