Skip to main content

Multi-kernel Times Series Outlier Detection

  • Conference paper
  • First Online:
Discovery Science (DS 2023)

Abstract

Time series are sequences of observations ordered by time. Detecting outliers in a set of time series is very important for many use cases, including fraud detection and predictive maintenance. However, this task continues to be difficult: First, time series may be of different lengths and conventional distance measures like the Euclidean distance can not capture their similarity well. Workarounds like feature engineering require domain knowledge and render solutions domain-specific. Second, many existing techniques are supervised, but training labels are expensive if not impossible to obtain. In this paper, we propose Multi-Kernel Times Series Outlier Detection (MK-TSOD), a method that combines the Fourier Transform, Global Alignment Kernels, and Multiple Kernel Learning with Support Vector Data Description. We describe its specifics, and show that MK-TSOD outperforms existing methods on standard benchmark data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/flopska/mk-tsod/.

  2. 2.

    We abbreviate the data sets “ChlorineConcentration”, “ToeSegmentation1”, and “ToeSegmentation2” as “Ch.Concent.”, “ToeSeg1”, and “ToeSeg2”, respectively.

  3. 3.

    https://www.csie.ntu.edu.tw/~cjlin/libsvm/.

  4. 4.

    https://github.com/flopska/mk-tsod/.

  5. 5.

    https://github.com/robjhyndman/anomalous-acm.

  6. 6.

    https://github.com/B-Seif/anomaly-detection-time-series.

  7. 7.

    Here, MK denotes MK-TSOD; DTW denotes DTW-SVDD.

References

  1. Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E.: The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Min. Knowl. Disc. 31, 606–660 (2017)

    Article  MathSciNet  Google Scholar 

  2. Beggel, L., Kausler, B.X., Schiegg, M., Pfeiffer, M., Bischl, B.: Time series anomaly detection based on Shapelet learning. Comput. Statistics 34, 945–976 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benkabou, S., Benabdeslem, K., Canitia, B.: Unsupervised outlier detection for time series by entropy and dynamic time warping. Knowl. Inf. Syst. 54(2), 463–486 (2018)

    Article  Google Scholar 

  4. Bordes, A., Ertekin, S., Weston, J., Bottou, L.: Fast kernel classifiers with online and active learning. J. Mach. Learn. Res. (JMLR) 6, 1579–1619 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Breunig, M.M., Kriegel, H., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: SIGMOD Conference, pp. 93–104 (2000)

    Google Scholar 

  6. Christ, M., Braun, N., Neuffer, J., Kempa-Liehr, A.W.: Time series feature extraction on basis of scalable hypothesis tests (tsfresh - a python package). Neurocomputing 307, 72–77 (2018)

    Article  Google Scholar 

  7. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    Article  MATH  Google Scholar 

  8. Cuturi, M.: Fast global alignment kernels. In: International Conference on Machine Learning (ICML). pp. 929–936 (2011)

    Google Scholar 

  9. Dau, H.A., Keogh, E., et al.: The UCR time series classification archive (2018)

    Google Scholar 

  10. Emmott, A., Das, S., Dietterich, T.G., Fern, A., Wong, W.: Systematic construction of anomaly detection benchmarks from real data. Technical report (2015). http://arxiv.org/abs/1503.01158

  11. Emmott, A.F., Das, S., Dietterich, T., Fern, A., Wong, W.K.: Systematic construction of anomaly detection benchmarks from real data. In: ACM SIGKDD Workshop on Outlier Detection and Description, pp. 16–21 (2013)

    Google Scholar 

  12. Ghafoori, Z., Erfani, S.M., Rajasegarar, S., Bezdek, J.C., Karunasekera, S., Leckie, C.: Efficient unsupervised parameter estimation for one-class support vector machines. Neural Netw. Learn. Syst. 29(10), 5057–5070 (2018)

    Article  Google Scholar 

  13. Gudmundsson, S., Runarsson, T.P., Sigurdsson, S.: Support vector machines and dynamic time warping for time series. In: International Joint Conference on Neural Networks (IJCNN), pp. 2772–2776 (2008)

    Google Scholar 

  14. Gupta, M., Gao, J., Aggarwal, C.C., Han, J.: Outlier detection for temporal data: a survey. Knowl. Data Eng. 26(9), 2250–2267 (2013)

    Article  Google Scholar 

  15. Hyndman, R.J., Wang, E., Laptev, N.: Large-scale unusual time series detection. In: International Conference on Data Mining Workshop (ICDMW), pp. 1616–1619 (2015)

    Google Scholar 

  16. Patel, D., et al.: FLOps: on learning important time series features for real-valued prediction. In: IEEE BigData 2020, pp. 1624–1633 (2020)

    Google Scholar 

  17. Platt, J.: Sequential minimal optimization: a fast algorithm for training support vector machines (1998). https://www.microsoft.com/en-us/research/publication/sequential-minimal-optimization-a-fast-algorithm-for-training-support-vector-machines/

  18. Rakotomamonjy, A., Bach, F., et al.: SimpleMKL. J. Mach. Learn. Res. (JMLR) 9, 2491–2521 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Ruff, L., et al.: Deep one-class classification. In: International Conference on Machine Learning (ICML), vol. 80, pp. 4390–4399 (2018)

    Google Scholar 

  20. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. Acoust. Speech Signal Process. 26(1), 43–49 (1978)

    Article  MATH  Google Scholar 

  21. Schölkopf, B., Smola, A.: Learning with Kernels: Support Vector Machines. Regularization, Optimization, and Beyond. MIT Press, Cambridge (2002)

    Google Scholar 

  22. Steinwart, I., Christmann, A.: Support Vector Machines. Springer, New York (2008). https://doi.org/10.1007/978-0-387-77242-4

    Book  MATH  Google Scholar 

  23. Tax, D.M.J., Duin, R.P.W.: Support vector data description. Mach. Learn. 54(1), 45–66 (2004)

    Article  MATH  Google Scholar 

  24. Vercruyssen, V., Meert, W., Davis, J.: “Now you see it, now you don’t!” detecting suspicious pattern absences in continuous time series. In: SIAM International Conference on Data Mining (SDM), pp. 127–135 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the DFG Research Training Group 2153: “Energy Status Data — Informatics Methods for its Collection, Analysis and Exploitation”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Kalinke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kalinke, F., Fouché, E., Thiessen, H., Böhm, K. (2023). Multi-kernel Times Series Outlier Detection. In: Bifet, A., Lorena, A.C., Ribeiro, R.P., Gama, J., Abreu, P.H. (eds) Discovery Science. DS 2023. Lecture Notes in Computer Science(), vol 14276. Springer, Cham. https://doi.org/10.1007/978-3-031-45275-8_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45275-8_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45274-1

  • Online ISBN: 978-3-031-45275-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics