Abstract
Spam reviews contain untruthful content created with malevolent intent, to affect the overall reputation of a product, service or company. This content is commonly made by malicious users or automated programs (i.e., bots) that mimic human behaviour. With the recent boom of online review systems, performing accurate review spam detection has become of primary importance for a review platform, to mitigate the effect of malicious users responsible for untruthful content. In this work, we propose a review spam classification approach, named GLORIA, that adopts a graph representation of review data and trains a graph convolutional neural network for edge classification as a review spam detection model. In particular, GLORIA represents both users (i.e., authors of reviews) and products (i.e., reviewed items) as nodes of a heterogeneous graph, while it represents reviews as graph edges that connect each author of a review to the reviewed item. Features of users, products and reviews are associated with nodes and edges, respectively.
Experiments performed on publicly available review datasets prove the effectiveness of the proposed approach compared with some state-of-the-art approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ali Alhosseini, S., Bin Tareaf, R., Najafi, P., Meinel, C.: Detect me if you can: spam bot detection using inductive representation learning. In: Companion Proceedings of the 2019 World Wide Web Conference, WWW 2019, pp. 148–153. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3308560.3316504
Andresini, G., Iovine, A., Gasbarro, R., Lomolino, M., de Gemmis, M., Appice, A.: Review spam detection using multi-view deep learning combining content and behavioral features. In: CEUR Workshop Proceedings, vol. 3340, pp. 87–98 (2022)
Andresini, G., Appice, A., Caforio, F.P., Malerba, D., Vessio, G.: ROULETTE: a neural attention multi-output model for explainable network intrusion detection. Expert Syst. Appl. 117144 (2022). https://doi.org/10.1016/j.eswa.2022.117144
Andresini, G., Appice, A., Malerba, D.: Dealing with class imbalance in android malware detection by cascading clustering and classification. In: Appice, A., Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z.W. (eds.) Complex Pattern Mining. SCI, vol. 880, pp. 173–187. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-36617-9_11
Andresini, G., Iovine, A., Gasbarro, R., Lomolino, M., de Gemmis, M., Appice, A.: Euphoria: a neural multi-view approach to combine content and behavioral features in review spam detection. J. Comput. Math. Data Sci. 3, 100036 (2022). https://doi.org/10.1016/j.jcmds.2022.100036
Appice, A., Malerba, D.: Segmentation-aided classification of hyperspectral data using spatial dependency of spectral bands. ISPRS J. Photogramm. Remote. Sens. 147, 215–231 (2019). https://doi.org/10.1016/j.isprsjprs.2018.11.023
Bhuvaneshwari, P., Rao, A., Robinson, H.: Spam review detection using self attention based CNN and bi-directional LSTM. Multimed. Tools Appl. 80, 1–18 (2021)
Cheng, J., Chunkai, Z., Dong, L.: A geometric-information-enhanced crystal graph network for predicting properties of materials. Commun. Mater. 2 (2021). https://doi.org/10.1038/s43246-021-00194-3
Crawford, M., Khoshgoftaar, T.M., Prusa, J.D., Richter, A.N., Al Najada, H.: Survey of review spam detection using machine learning techniques. J. Big Data 2(1), 1–24 (2015). https://doi.org/10.1186/s40537-015-0029-9
Dugas, C., Bengio, Y., Bélisle, F., Nadeau, C., Garcia, R.: Incorporating second-order functional knowledge for better option pricing. In: Proceedings of the 13th International Conference on Neural Information Processing Systems, NIPS 2000, pp. 451–457. MIT Press, Cambridge (2000)
Ferrara, E.: The history of digital spam. Commun. ACM 62(8), 82–91 (2019). https://doi.org/10.1145/3299768
Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: AISTATS, pp. 315–323. JMLR.org (2011)
Han, J., Moraga, C.: The influence of the sigmoid function parameters on the speed of backpropagation learning. In: Mira, J., Sandoval, F. (eds.) IWANN 1995. LNCS, vol. 930, pp. 195–201. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59497-3_175
Heydari, A., ali Tavakoli, M., Salim, N., Heydari, Z.: Detection of review spam: a survey. Expert Syst. Appl. 42(7), 3634–3642 (2015). https://doi.org/10.1016/j.eswa.2014.12.029
Hussain, N., Mirza, H., Hussain, I., Iqbal, F., Memon, I.: Spam review detection using the linguistic and spammer behavioral methods. IEEE Access 8, 53801–53816 (2020). https://doi.org/10.1109/ACCESS.2020.2979226
Hussain, N., Turab Mirza, H., Rasool, G., Hussain, I., Kaleem, M.: Spam review detection techniques: a systematic literature review. Appl. Sci. 9(5) (2019)
Jindal, N., Liu, B.: Opinion spam and analysis. In: Proceedings of the 2008 International Conference on Web Search and Data Mining, WSDM 2008, pp. 219–230. Association for Computing Machinery, New York (2008)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2014)
Li, A., Qin, Z., Liu, R., Yang, Y., Li, D.: Spam review detection with graph convolutional networks, pp. 2703–2711 (2019). https://doi.org/10.1145/3357384.3357820
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 318–327 (2020). https://doi.org/10.1109/TPAMI.2018.2858826
Lin, Y., Zhu, T., Wu, H., Zhang, J., Wang, X., Zhou, A.: Towards online anti-opinion spam: spotting fake reviews from the review sequence. In: 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014), pp. 261–264 (2014). https://doi.org/10.1109/ASONAM.2014.6921594
Makki, S., Assaghir, Z., Taher, Y., Haque, R., Hacid, M.S., Zeineddine, H.: An experimental study with imbalanced classification approaches for credit card fraud detection. IEEE Access 7, 93010–93022 (2019). https://doi.org/10.1109/ACCESS.2019.2927266
Mukherjee, A., Venkataraman, V., Liu, B., Glance, N.S.: What yelp fake review filter might be doing? In: Kiciman, E., Ellison, N.B., Hogan, B., Resnick, P., Soboroff, I. (eds.) Proceedings of the Seventh International Conference on Weblogs and Social Media, ICWSM 2013, Cambridge, Massachusetts, USA, 8–11 July 2013. The AAAI Press (2013). https://doi.org/10.1609/icwsm.v7i1.14389
Ren, Y., Ji, D.: Neural networks for deceptive opinion spam detection: an empirical study. Inf. Sci. 385–386, 213–224 (2017). https://doi.org/10.1016/j.ins.2017.01.015
Shehnepoor, S., Salehi, M., Farahbakhsh, R., Crespi, N.: NetSpam: a network-based spam detection framework for reviews in online social media. IEEE Trans. Inf. Forensics Secur. 12, 1585–1595 (2017). https://doi.org/10.1109/TIFS.2017.2675361
Soliman, A., Girdzijauskas, S.: AdaGraph: adaptive graph-based algorithms for spam detection in social networks. In: El Abbadi, A., Garbinato, B. (eds.) NETYS 2017. LNCS, vol. 10299, pp. 338–354. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59647-1_25
Wang, G., Xie, S., Liu, B., Yu, P.S.: Identify online store review spammers via social review graph. ACM Trans. Intell. Syst. Technol. 3(4) (2012). https://doi.org/10.1145/2337542.2337546
Xie, T., Grossman, J.C.: Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys. Rev. Lett. 120, 145301 (2018). https://doi.org/10.1103/PhysRevLett.120.145301
Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph convolutional neural networks for web-scale recommender systems. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2018, pp. 974–983. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3219819.3219890
Zhao, C., Xin, Y., Li, X., Zhu, H., Yang, Y., Chen, Y.: An attention-based graph neural network for spam bot detection in social networks. Appl. Sci. 10(22) (2020). https://doi.org/10.3390/app10228160
Zhao, S., Xu, Z., Liu, L., Guo, M.: Towards accurate deceptive opinion spam detection based on word order-preserving CNN. Math. Probl. Eng. 2018 (2018). https://doi.org/10.1155/2018/2410206
Acknowledgments
The work of Giuseppina Andresini and Donato Malerba was supported by the project FAIR - Future AI Research (PE00000013), Spoke 6 - Symbiotic AI, under the NRRP MUR program funded by the NextGenerationEU. The work of Annalisa Appice was partially supported by project SERICS (PE00000014) under the NRRP MUR National Recovery and Resilience Plan funded by the European Union - NextGenerationEU. The authors wish to thank Raffaele Scaringi for the helpful discussion on Graph Neural Networks.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
CRediT Authorship Contribution Statement
Giuseppina Andresini. Conceptualization, Methodology, Data curation, Investigation, Validation, Supervision, Visualization, Writing - original draft, Writing - review & editing. Annalisa Appice: Conceptualization, Methodology, Investigation, Validation, Supervision, Writing - original draft, Writing - review & editing. Roberto Gasbarro: Methodology, Software, Investigation, Data curation, Visualization, Writing - review & editing. Donato Malerba: Conceptualization, Writing - review & editing.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Andresini, G., Appice, A., Gasbarro, R., Malerba, D. (2023). GLORIA: A Graph Convolutional Network-Based Approach for Review Spam Detection. In: Bifet, A., Lorena, A.C., Ribeiro, R.P., Gama, J., Abreu, P.H. (eds) Discovery Science. DS 2023. Lecture Notes in Computer Science(), vol 14276. Springer, Cham. https://doi.org/10.1007/978-3-031-45275-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-45275-8_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-45274-1
Online ISBN: 978-3-031-45275-8
eBook Packages: Computer ScienceComputer Science (R0)