Skip to main content

A Decision Tree as an Explainable Artificial Intelligence Technique for Identifying Agricultural Production Predictor Variables in Mexico

  • Conference paper
  • First Online:
Telematics and Computing (WITCOM 2023)

Abstract

Agriculture has been an essential and foundational activity for human societies since the dawn of civilization and nowadays serves as the backbone of economies worldwide. Efforts to understand and to enhance agricultural productivity are crucial for addressing global challenges and achieving sustainable development goals. This research study focuses on analyzing the factors influencing production of the flagship crops of the 32 states in Mexico. A regression tree model was employed as an explainable artificial intelligence technique to gain insights into the production patterns. The study utilized a dataset containing various agricultural variables, including territorial extension, precipitation mean, and temperature measurements across different months. Quantitative and qualitative approaches were employed to understand the significance of predictors. Through permutation importance analysis, it was identified that territorial extension, precipitation mean, and specific temperature measures, such as minimum temperature in January and mean temperature in November, had a substantial impact on crop production. Additionally, a visual analysis of the pruned regression tree further confirmed the importance of these predictors. The findings led to the formulation of seven production rules, which provide valuable guidance for agricultural decision-making. The results highlight the potential of the regression tree model as an explainable tool for understanding and predicting crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alsharef, A., Aggarwal, K., Sonia, Kumar, M., Mishra, A.: Review of ML and AutoML solutions to forecast time-series data. Arch. Comput. Methods Eng. 29(7), 5297–5311 (2022). https://doi.org/10.1007/s11831-022-09765-0

  2. Ávila, D.D., Ramírez-Arrieta, V.M.: If an image is worth than thousand words: how much a box plot can say? Revista del Jardin Botanico Nacional 41(November), 57–69 (2020)

    Google Scholar 

  3. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  4. Caira Mamani, C.M., Lopez Loayza, C., Carhuarupay Molleda, Y.F.: Efecto de la temperatura y precipitacion sobre la agricultura en la cuenca Coata-Puno, Perú. Revista Alfa 5(14), 285–296 (2021). https://doi.org/10.33996/revistaalfa.v5i14.118

  5. Canales, E., Andrango, G., Williams, A.: Mexico’s agricultural sector: production potential and implications for trade. Choices 34(3), 1–12 (2019)

    Google Scholar 

  6. Cartolano, A., Cuzzocrea, A., Pilato, G., Grasso, G.M.: Explainable AI at work! what can it do for smart agriculture? In: 2022 IEEE Eighth International Conference on Multimedia Big Data (BigMM), pp. 87–93. IEEE (2022)

    Google Scholar 

  7. Conagua: Climatología, resúmenes mensuales de temperatura y lluvia (2022). https://smn.conagua.gob.mx/es/climatologia/temperaturas-y-lluvias/resumenes-mensuales-de-temperaturas-y-lluvias

  8. Dannehl, D., Huber, C., Rocksch, T., Huyskens-Keil, S., Schmidt, U.: Interactions between changing climate conditions in a semi-closed greenhouse and plant development, fruit yield, and health-promoting plant compounds of tomatoes. Sci. Hortic. 138, 235–243 (2012). https://doi.org/10.1016/j.scienta.2012.02.022

    Article  Google Scholar 

  9. De Clercq, D., Wen, Z., Fei, F., Caicedo, L., Yuan, K., Shang, R.: Interpretable machine learning for predicting biomethane production in industrial-scale anaerobic co-digestion. Sci. Total Environ. 712, 134574 (2020)

    Article  Google Scholar 

  10. Delaney, E.: Case-based explanation for black-box time series and image models with applications in smart agriculture. ICCBR Doctoral Consortium 1613, 0073 (2022)

    Google Scholar 

  11. Dogan, A., Birant, D.: Machine learning and data mining in manufacturing. Expert Syst. Appl. 166, 114060 (2021)

    Article  Google Scholar 

  12. Donatelli, M., Magarey, R.D., Bregaglio, S., Willocquet, L., Whish, J.P., Savary, S.: Modelling the impacts of pests and diseases on agricultural systems. Agric. Syst. 155, 213–224 (2017). https://doi.org/10.1016/j.agsy.2017.01.019

    Article  Google Scholar 

  13. Dwamena, H.A., Tawiah, K., Akuoko Kodua, A.S.: The effect of rainfall, temperature, and relative humidity on the yield of cassava, yam, and maize in the Ashanti region of Ghana. Int. J. Agron. 2022, 1–12 (2022). https://doi.org/10.1155/2022/9077383

    Article  Google Scholar 

  14. Friha, O., Ferrag, M.A., Shu, L., Maglaras, L., Wang, X.: Internet of things for the future of smart agriculture: a comprehensive survey of emerging technologies. IEEE/CAA J. Automatica Sinica 8(4), 718–752 (2021). https://doi.org/10.1109/JAS.2021.1003925

    Article  Google Scholar 

  15. Galindo, V., Giraldo, C., Lavelle, P., Armbrecht, I., Fonte, S.J.: Land use conversion to agriculture impacts biodiversity, erosion control, and key soil properties in an Andean watershed. Ecosphere 13(3), 1–19 (2022). https://doi.org/10.1002/ecs2.3979

    Article  Google Scholar 

  16. Garrido, M.C., Cadenas, J.M., Bueno-Crespo, A., Martínez-España, R., Giménez, J.G., Cecilia, J.M.: Evaporation forecasting through interpretable data analysis techniques. Electronics 11(4), 536 (2022)

    Article  Google Scholar 

  17. Hendrickson, J.R., Hanson, J.D., Tanaka, D.L., Sassenrath, G.: Principles of integrated agricultural systems: introduction to processes and definition. Renewable Agric. Food Syst. 23(4), 265–271 (2008). https://doi.org/10.1017/S1742170507001718

    Article  Google Scholar 

  18. Jacobs, L., Quack, L.: The end of the diesel subsidy: distributional effects of a CO2-based energy tax reform. Wirtschaftsdienst 98(8), 578–586 (2018). https://doi.org/10.1007/s10273-018-2334-3

    Article  Google Scholar 

  19. Kawakura, S., Hirafuji, M., Ninomiya, S., Shibasaki, R.: Analyses of diverse agricultural worker data with explainable artificial intelligence: XAI based on SHAP, LIME, and LightGBM. Eur. J. Agric. Food Sci. 4(6), 11–19 (2022). https://doi.org/10.24018/ejfood.2022.4.6.348

    Article  Google Scholar 

  20. Kenny, E.M., et al.: Predicting grass growth for sustainable dairy farming: a CBR system using Bayesian case-exclusion and Post-Hoc, personalized explanation-by-example (XAI). In: Bach, K., Marling, C. (eds.) ICCBR 2019. LNCS (LNAI), vol. 11680, pp. 172–187. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29249-2_12

    Chapter  Google Scholar 

  21. Kingsford, C., Salzberg, S.L.: What are decision trees? Nat. Biotechnol. 26(9), 1011–1013 (2008)

    Article  Google Scholar 

  22. Langer, M., et al.: What do we want from explainable artificial intelligence (XAI)? - a stakeholder perspective on XAI and a conceptual model guiding interdisciplinary XAI research. Artif. Intell. 296, 103473 (2021). https://doi.org/10.1016/j.artint.2021.103473

    Article  MathSciNet  Google Scholar 

  23. Liakos, K.G., Busato, P., Moshou, D., Pearson, S., Bochtis, D.: Machine learning in agriculture: a review. Sensors (Switzerland) 18(8), 1–29 (2018). https://doi.org/10.3390/s18082674

    Article  Google Scholar 

  24. Mahbooba, B., Timilsina, M., Sahal, R., Serrano, M.: Explainable artificial intelligence (xai) to enhance trust management in intrusion detection systems using decision tree model. Complexity 2021, 1–11 (2021)

    Google Scholar 

  25. Megeto, G.A.S., da Silva, A.G., Bulgarelli, R.F., Bublitz, C.F., Valente, A.C., da Costa, D.A.G.: Artificial intelligence applications in the agriculture 4.0. Revista Ciência Agronômica 51(5), 1–8 (2020). https://doi.org/10.5935/1806-6690.20200084

  26. Newman, S.J., Furbank, R.T.: Explainable machine learning models of major crop traits from satellite-monitored continent-wide field trial data. Nat. Plants 7(10), 1354–1363 (2021)

    Article  Google Scholar 

  27. Ngo, Q.H., Kechadi, T., Le-Khac, N.A.: OAK4XAI: model towards out-of-box explainable artificial intelligence for digital agriculture. In: Bramer, M., Stahl, F. (eds.) SGAI-AI 2022. LNCS, vol. 13652, pp. 238–251. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-21441-7_17

    Chapter  Google Scholar 

  28. Organización de las Naciones Unidas para la Alimentación y la Agricultura: La agricultura mundial en la perspectiva del año 2050. Fao, pp. 1–4 (2009). http://www.fao.org/fileadmin/templates/wsfs/docs/I

  29. Posadas, B.B., Ogunyiola, A., Niewolny, K.: Socially responsible AI assurance in precision agriculture for farmers and policymakers. In: AI Assurance, pp. 473–499. Elsevier (2023)

    Google Scholar 

  30. Ramirez-Villegas, J., Jarvis, A., Läderach, P.: Empirical approaches for assessing impacts of climate change on agriculture: the EcoCrop model and a case study with grain sorghum. Agric. Forest Meteorol. 170, 67–78 (2013). https://doi.org/10.1016/j.agrformet.2011.09.005

    Article  Google Scholar 

  31. Ryo, M.: Explainable artificial intelligence and interpretable machine learning for agricultural data analysis. Artif. Intell. Agric. 6, 257–265 (2022). https://doi.org/10.1016/j.aiia.2022.11.003. https://www.sciencedirect.com/science/article/pii/S2589721722000216

  32. SAGARPA: SIAP - Servicio de Información Agroalimentaria y Pesquera Datos Abiertos (2014). http://infosiap.siap.gob.mx/gobmx/datosAbiertos.php. http://www.siap.gob.mx/datos-abiertos/

  33. Shakoor, M.T., Rahman, K., Rayta, S.N., Chakrabarty, A.: Agricultural production output prediction using supervised machine learning techniques. In: 2017 1st International Conference on Next Generation Computing Applications, NextComp, pp. 182–187 (2017). https://doi.org/10.1109/NEXTCOMP.2017.8016196

  34. Sihi, D., Dari, B., Kuruvila, A.P., Jha, G., Basu, K.: Explainable machine learning approach quantified the long-term (1981–2015) impact of climate and soil properties on yields of major agricultural crops across conus. Front. Sustainable Food Syst. 145 (2022)

    Google Scholar 

  35. Sohail, M.T., Mustafa, S., Ali, M.M., Riaz, S.: Agricultural communities’ risk assessment and the effects of climate change: a pathway toward green productivity and sustainable development. Frontiers Environ. Sci. 10 (2022). https://doi.org/10.3389/fenvs.2022.948016

  36. Sosa Baldivia, A., Ruíz Ibarra, G., Sosa Baldivia, A., Ruíz Ibarra, G.: La disponibilidad de alimentos en México: un análisis de la producción agrícola de 35 años y su proyección para 2050. Papeles de Población 23(93), 207–230 (2017). 10(22185/24487147), pp. 93, 2017.027. https://rppoblacion.uaemex.mx/article/view/9111

  37. Spanaki, K., Sivarajah, U., Fakhimi, M., Despoudi, S., Irani, Z.: Disruptive technologies in agricultural operations: a systematic review of AI-driven AgriTech research, 308 (2022). https://doi.org/10.1007/s10479-020-03922-z

  38. Torres, R.: Linkages between tourism and agriculture in Mexico. Ann. Tour. Res. 30(3), 546–566 (2003). https://doi.org/10.1016/S0160-7383(02)00103-2

    Article  Google Scholar 

  39. Viana, C.M., Santos, M., Freire, D., Abrantes, P., Rocha, J.: Evaluation of the factors explaining the use of agricultural land: a machine learning and model-agnostic approach. Ecol. Ind. 131, 108200 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by projects 13933.22-P and 14601.22-P from Tecnológico Nacional de México/IT de Mérida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Gabriel Orozco-del-Castillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ruiz-Juárez, H.M., Castillo-Araujo, J., Orozco-del-Castillo, M.G., Cuevas-Cuevas, N.L., Cárdenas-Pimentel, F., Cáceres-Escalante, R. (2023). A Decision Tree as an Explainable Artificial Intelligence Technique for Identifying Agricultural Production Predictor Variables in Mexico. In: Mata-Rivera, M.F., Zagal-Flores, R., Barria-Huidobro, C. (eds) Telematics and Computing. WITCOM 2023. Communications in Computer and Information Science, vol 1906. Springer, Cham. https://doi.org/10.1007/978-3-031-45316-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45316-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45315-1

  • Online ISBN: 978-3-031-45316-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics