Skip to main content

Development of a Web-Based Calculator to Simulate Link Budget for Mobile Communications Systems at Urban Settlements

  • Conference paper
  • First Online:
Telematics and Computing (WITCOM 2023)

Abstract

Cellular wireless networks have taken a preponderant role in modern society. With the emergence of 5G and 6G connections, the potential that they may unleash could transform the face in which mankind and machines work together. However, current 5G links are still scarce compared with the total amount of cellular users worldwide, and 6G is still in development phase. In this sense, 2G–4G links still dominate the market, with large physical infrastructures bearing transmissions ranging from 800 to 2,000 MHz. Thus, it is still important to provide reliable link budgets within such a frequency range in order to guarantee stability and quality of service. Despite there are many software-based calculators that provide a tool for link budgeting of cellular connections, they may be cumbersome to use, they could be of payment, they do not necessarily pose the used models as well as their range of validity, among other issues. The present work consists of the design and implementation of a calculation software tool for the construction of the link budget based on radio communications. The tool aims to offer ease of use, flexibility, accuracy, and accessibility in the area of communication systems, to obtain reliable and adequate link budget parameters, prior to the construction and commissioning of the real communications system. The software contains calculation options such as: conversion and display of basic measurement units for radio frequency links, Link Budget calculation, free space loss calculation applied to open environments, simulation and calculation of parameters for the design of communication systems, simulation of statistical models of wave propagation, among others. The software has a web-based friendly-user interface which can be used in any device and under any operating system, is modular and use generic processes, so it does not depend on specific transmission equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Garg, M., et al.: A review on Internet of Things: communication protocols, wireless technologies, and applications. In: Dhar, S., Do, D.T., Sur, S.N., Liu, H.C.M. (eds.) Advances in Communication, Devices and Networking. LNEE, vol. 902, pp. 265–278. Springer, Singapore (2023). https://doi.org/10.1007/978-981-19-2004-2_23

    Chapter  Google Scholar 

  2. Avşar, E., Mowla, M.: Wireless communication protocols in smart agriculture: a review on applications, challenges and future trends. Ad Hoc Netw. 136, 102982 (2022)

    Article  Google Scholar 

  3. Ramalingam, S., Shanmugam, P.: A comprehensive review on wired and wireless communication technologies and challenges in smart residential buildings. Recent Adv. Comput. Sci. Commun. 15(9), 1140–1147 (2022)

    Article  Google Scholar 

  4. Rawat, A., Yadav, D., Tiwari, M.: A review on mmWave antennas for wireless cellular communication. In: Proceedings - 7th International Conference on Computing Methodologies and Communication, ICCMC 2023, pp. 1009–1015 (2023)

    Google Scholar 

  5. Lian, B., Wei, Z., Sun, X., Li, Z., Zhao, J.: A review on rainfall measurement based on commercial microwave links in wireless cellular networks. Sensors 22(12), 4395 (2022)

    Article  Google Scholar 

  6. Abbas, Z., Yoon, W.: A review of mobility supporting tunneling protocols in wireless cellular networks. Int. J. Adv. Comput. Sci. Appl. 13(2), 24–32 (2022)

    Google Scholar 

  7. Raja, S.K.S., Louis, A.B.V.: A review of call admission control schemes in wireless cellular networks. Wireless Pers. Commun. 120(4), 3369–3388 (2021). https://doi.org/10.1007/s11277-021-08618-6

    Article  Google Scholar 

  8. Nayak, D.S., Akshaya Krishna, N., Shetty, S., Naik, S.D., Sambhram, V., Shetty, K.: Review on application of wireless technology using IoT. In: Joby, P.P., Balas, V.E., Palanisamy, R. (eds.) IoT Based Control Networks and Intelligent Systems. LNNS, vol. 528, pp. 161–170. Springer, Singapore (2023). https://doi.org/10.1007/978-981-19-5845-8_12

    Chapter  Google Scholar 

  9. Pamarthi, S., Narmadha, R.: Literature review on network security in Wireless Mobile Ad-hoc Network for IoT applications: network attacks and detection mechanisms. Int. J. Intell. Unmanned Syst. 10(4), 482–506 (2022)

    Article  Google Scholar 

  10. Bhardwaj, B., Vanita, Kumar, S.: Application of IoT in 5G wireless communication: a detailed review. In: Luhach, A.K., Jat, D.S., Hawari, K.B.G., Gao, XZ., Lingras, P. (eds.) ICAICR 2021. CCIS, vol. 1575, pp. 269–279. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-09469-9_23

  11. Singh, M.: A review on IoT traffic wireless sensor network. In: CEUR Workshop Proceedings, vol. 3058 (2021)

    Google Scholar 

  12. Neeraj Krishna, N., Padmasine, K.G.: A review on microwave band pass filters: materials and design optimization techniques for wireless communication systems. Mater. Sci. Semicond. Process. 154, 107181 (2023)

    Article  Google Scholar 

  13. Zhu, X., Jin, K., Hui, Q., Gong, W., Mao, D.: Long-range wireless microwave power transmission: a review of recent progress. IEEE J. Emerg. Sel. Top. Power Electron. 9(4), 4932–4946 (2021)

    Article  Google Scholar 

  14. Tsitsos, S.: Advances on microwave ceramic filters for wireless communications (review paper). Int. J. Electr. Comput. Eng. 8(5), 2762–2772 (2018)

    Google Scholar 

  15. Lakew, D., Tran, A.T., Masood, A., Dao, N.N., Cho, S.: A review on satellite-terrestrial integrated wireless networks: challenges and open research issues. In: International Conference on Information Networking, pp. 638–641 (2023)

    Google Scholar 

  16. Choudhary, A., Agrawal, N.: Inter-satellite optical wireless communication (IsOWC) systems challenges and applications: a comprehensive review. J. Opt. Commun. (2022)

    Google Scholar 

  17. Sohraby, K., Minoli, D., Occhiogrosso, B., Wang, W.: A review of wireless and satellite-based M2M/IoT services in support of smart grids. Mob. Netw. Appl. 23(4), 881–895 (2018). https://doi.org/10.1007/s11036-017-0955-1

    Article  Google Scholar 

  18. Maurya, G., Kokate, P., Lokhande, S., Shrawankar, J.: A review on investigation and assessment of path loss models in urban and rural environment. In: IOP Conference Series: Materials Science and Engineering, vol. 225 (2017)

    Google Scholar 

  19. Kurt, S., Tavli, B.: Path-loss modeling for wireless sensor networks: a review of models and comparative evaluations. IEEE Antennas Propag. Mag. 59(1), 18–37 (2017)

    Article  Google Scholar 

  20. Oni, O., Idachaba, F.: Review of selected wireless system path loss prediction models and its adaptation to indoor propagation environments. In: Lecture Notes in Engineering and Computer Science, vol. 2228, pp. 562–567 (2017)

    Google Scholar 

  21. Okumura, Y., et al.: Field strength variability in VHF and UHF land mobile service. Rev. Electr. Commun. Lab. 16, 825–873 (1968)

    Google Scholar 

  22. Hata, M.: Empirical formula for propagation loss in land mobile radio services. IEEE Trans. Veh. Technol. 29(3), 317–325 (1980)

    Article  Google Scholar 

  23. Walfisch, J., Bertoni, H.: A theoretical model of UHF propagation in urban environments. IEEE Trans. Antennas Propag. 36(12), 1788–1796 (1988)

    Article  Google Scholar 

  24. Ikegami, F., Takeuchi, T., Yoshida, S.: Theoretical prediction of mean field strength for urban mobile radio. IEEE Trans. Antennas Propag. 39(3), 299–302 (1991)

    Article  Google Scholar 

  25. Li, H., He, X., He, W.: Review of wireless personal communications radio propagation models in high altitude mountainous areas at 2.6 GHz. Wireless Pers. Commun. 101(2), 735–753 (2018). https://doi.org/10.1007/s11277-018-5713-6

    Article  Google Scholar 

  26. Azevedo, J., Santos, F.: A model to estimate the path loss in areas with foliage of trees. AEU-Int. J. Electron. Commun. 71, 157–161 (2017)

    Article  Google Scholar 

  27. Kurnaz, O., Helhel, S.: Near ground propagation model for pine tree forest environment. AEU-Int. J. Electron. Commun. 68(10), 944–950 (2014)

    Article  Google Scholar 

  28. Basyigit, I.: Empirical path loss models for 5G wireless sensor network in coastal pebble/sand environments. Int. J. Microw. Wireless Technol. 14(9), 1222–1231 (2022)

    Article  Google Scholar 

  29. Duangsuwan, S., Maw, M.: Comparison of path loss prediction models for UAV and IoT air-to-ground communication system in rural precision farming environment. J. Commun. 16(2), 60–66 (2021)

    Article  Google Scholar 

  30. Budalal, A., Islam, M.: Path loss models for outdoor environment-with a focus on rain attenuation impact on short-range millimeter-wave links. e-Prime - Adv. Electr. Eng. Electron. Energy 3, 100106 (2023)

    Google Scholar 

  31. Daho, A., Yamada, Y., Al-Samman, A., Abdrahman, T., Azmi, M., Arsad, A.: Proposed path loss model for outdoor environment in tropical climate for the 28-GHz 5G system. In: 2021 1st International Conference on Emerging Smart Technologies and Applications, eSmarTA 2021 (2021)

    Google Scholar 

  32. Sulyman, A., Seleem, H., Alwarafy, A., Humadi, K., Alsanie, A.: Effects of solar radio emissions on outdoor propagation path loss models at 60 GHz bands for access/backhaul links and D2D communications. IEEE Trans. Antennas Propag. 65(12), 6624–6635 (2017)

    Article  Google Scholar 

  33. Khan, M., Manzoor, K., Mughal, M.: Path loss prediction model incorporating the effects of vegetation and vehicular traffic in URBAN microcell. In: Proceedings - 4th IEEE International Conference on Emerging Technologies 2008, ICET 2008, pp. 152–155 (2008)

    Google Scholar 

  34. Al-Dabbagh, R., Al-Aboody, N., Al-Raweshidy, H.: A simplified path loss model for investigating diffraction and specular reflection impact on millimetre wave propagation. In: Proceedings of the 2017 8th International Conference on the Network of the Future, NOF 2017, pp. 153–155 (2017)

    Google Scholar 

  35. Khaleel, W.: Design Link Between Earth Station and Satellite System, vol. 1, 1st edn. Lambert Academic Publishing (2020)

    Google Scholar 

  36. Al-Hattab, M., Takruri, M.: Adaptive method to estimate link budget parameters in wireless networks. In: 2022 9th International Conference on Internet of Things, Systems, Management and Security, IOTSMS 2022 (2022)

    Google Scholar 

  37. Samaniego-Rojas, P., Salcedo-Serrano, P., Boluda-Ruiz, R., Garrido-Balsells, J., García-Zambrana, A.: Novel link budget modelling for NLOS submarine optical wireless links. In: Optics InfoBase Conference Papers (2022)

    Google Scholar 

  38. Ponce, K., Inca, S., Diaz, D., Nunez, M.: Towards adaptive LoRa wireless sensor networks: link budget and energy consumption analysis. In: Proceedings of the 2021 IEEE 28th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2021 (2021)

    Google Scholar 

  39. Weng, Z.K., et al.: Millimeter-wave and terahertz fixed wireless link budget evaluation for extreme weather conditions. IEEE Access 9, 163476–163491 (2021)

    Article  Google Scholar 

  40. Jones, R.: Handbook on Satellite Communications (HSC) (1985)

    Google Scholar 

  41. European Telecommunications Standard Institute: Fixed radio systems; point-to-point equipment; derivation of receiver interference parameters useful for planning fixed service point-to-point systems operating different equipment classes and/or capacities. Technical report, ETSI TR 101 854, European Telecommunications Standard Institute (2005)

    Google Scholar 

  42. The MathWorks Inc.: Communications Toolbox - MATLAB (2023). https://www.mathworks.com/products/communications.html. Accessed 01 June 2023

  43. Keysight Technologies: PadthWave Advanced Design System (ADS): Keysight (2023). https://www.keysight.com/us/en/products/software/pathwave-design-software/pathwave-advanced-design-system.html. Accessed 02 June 2023

  44. Pasternack: Link Budget Calculator (2023). https://www.pasternack.com/t-calculator-link-budget.aspx. Accessed 04 June 2023

  45. Huawei: “pon link budget calculator” (2021). https://info.support.huawei.com/AccessInfoTool/PON_Budget_Tool/index?language=en &domain=0

  46. Radwin: Radwin Link Budget Calculator (2021). http://tools.radwin.com/planner/

  47. RF Wireless World: Hata model path loss calculator: Hata model path loss formula (2012). https://www.rfwireless-world.com/calculators/Hata-model-path-loss-calculator.html

  48. Gütter, D.: CANDY - Tools - Simple outdoor wave propagation models (2013). http://www.guetter-web.de/mini-tools/candy-prop-outdoor.htm#wi231los

  49. Cost Final Report: COST 231 Walfisch-Ikegami Model (2012). http://www.lx.it.pt/cost231/

  50. Bordón L’opez, R., Alonso Quintana, R., Montejo Sánchez, S.: Evaluación de modelos de propagación de canal inalámbrico. Revista Cubana Ingeniería 3(1), 55 (2012)

    Google Scholar 

  51. Alqudah, Y.A.: On the performance of Cost 231 Walfisch Ikegami model in deployed 3.5 GHz network. In: 2013 The International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE), pp. 524–527 (2013)

    Google Scholar 

  52. Harinda, E., Hosseinzadeh, S., Larijani, H., Gibson, R.M.: Comparative performance analysis of empirical propagation models for LoRaWAN 868 MHz in an urban scenario. In: 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), pp. 154–159 (2019)

    Google Scholar 

  53. Hill, G.: The Cable and Telecommunications Professionals’ Reference: PSTN, IP and Cellular Networks, and Mathematical Techniques. Taylor & Francis (2012). https://books.google.com.mx/books?id=Oi14kDFRl6cC

  54. Del Peral-Rosado, J., Raulefs, R., López-Salcedo, J., Seco-Granados, G.: Survey of cellular mobile radio localization methods: from 1G to 5G. IEEE Commun. Surv. Tutor. 20(2), 1124–1148 (2018)

    Article  Google Scholar 

  55. Sasibhushana Rao, G., Rao, C., Satya Prasad, K.: Performance analysis of 4G (OFDMA), 3G,2G and 1G cellular systems. Int. J. Appl. Eng. Res. 10(15), 35753–35756 (2015)

    Google Scholar 

  56. Barik, D.K., Mali, S., Ali, F.A., Agarwal, A.: Design and analysis of RF optimization in 2G GSM and 4G LTE network. In: Mishra, M., Sharma, R., Kumar Rathore, A., Nayak, J., Naik, B. (eds.) Innovation in Electrical Power Engineering, Communication, and Computing Technology. LNEE, vol. 814, pp. 11–18. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-7076-3_2

    Chapter  Google Scholar 

  57. Yuwono, T., Wibisono, N.: Analysis and improvement of handover failure in 2G GSM network. In: Proceedings - ICWT 2016: 2nd International Conference on Wireless and Telematics 2016, pp. 122–126 (2017)

    Google Scholar 

  58. Yuwono, T., Ferdiyanto, F.: RF measurement and analysis of 2G GSM network performance case study: Yogyakarta Indonesia. In: 2015 IEEE International Conference on Smart Instrumentation, Measurement and Applications, ICSIMA 2015 (2016)

    Google Scholar 

  59. Hirai, S., Arakawa, N., Ueno, T., Hamada, H., Kamei, K.: A chip antenna for CDMAOne mobile phones. Furukawa Rev. 25, 28–31 (2004)

    Google Scholar 

  60. Hitachi: CDMAOne cellular phone. Hitachi Review Special Issue, 28 (2001)

    Google Scholar 

  61. Barrick, M.: Fine-tuning test methods for CDMAOne handsets. Microwaves RF 39(4), 84–90 (2000)

    Google Scholar 

  62. Dixit, Y., Muhammed, S.: Performance trade-offs of a software defined radio for 2G and 3G cellular mobile communication standards. In: First International Conference on Communication System Software and Middleware, Comsware 2006 (2006)

    Google Scholar 

  63. Goodman, D., Myers, R.: 3G cellular standards and patents. In: 2005 International Conference on Wireless Networks, Communications and Mobile Computing, vol. 1, pp. 415–420 (2005)

    Google Scholar 

  64. Pribylov, V., Rezvan, I.: On the way to 3G networks: the GPRS/EDGE concept. In: Proceedings of the 4th IEEE-Russia Conference - 2003 Microwave Electronics: Measurements, Identification, Applications, MEMIA 2003, pp. 87–98 (2003)

    Google Scholar 

  65. Zhang, W., Chen, S.H., Su, J.S., Chen, P.X.: Traffic measurement and analysis in CDMA2000 3G core network. Tongxin Xuebao/J. Commun. 32(9A), 123–127 (2011)

    Google Scholar 

  66. Lu, J., et al.: On the beyond 3G evolution of CDMA2000 wireless cellular networks. In: Proceedings - 2007 IEEE Radio and Wireless Symposium, RWS, pp. 495–498 (2007)

    Google Scholar 

  67. Saugstrup, D., Henten, A.: 3G standards: the battle between WCDMA and CDMA2000. Info 8(4), 10–20 (2006)

    Article  Google Scholar 

  68. Hsu, L., Derryberry, R., Pi, Z., Niva, I.: 3G evolution: CDMA2000®1xEV-DV forward and reverse links. In: Proceedings - 2004 Global Mobile Congress, pp. 041–046 (2004)

    Google Scholar 

  69. Parry, R.: CDMA 2000 1xEV-DO: a 3G wireless internet access system. IEEE Potentials 21(4), 10–13 (2002)

    Article  Google Scholar 

  70. Yuwono, T., Putra, A.: Drive test and analysis of 3G WCDMA system using binning technique case study: Yogyakarta Indonesia. Adv. Sci. Lett. 23(2), 1344–1346 (2017)

    Article  Google Scholar 

  71. Joyce, R., Zhang, L.: The effectiveness of low power co-channel lamppost mounted 3G/WCDMA microcells. In: 20th European Wireless Conference, EW 2014, pp. 118–123 (2014)

    Google Scholar 

  72. Skoutas, D., Skianis, C.: Enhancing the high speed downlink packet access operation of 3G WCDMA systems. Wireless Commun. Mob. Comput. 14(1), 115–127 (2014)

    Article  Google Scholar 

  73. Al-Qahtani, S., Mahmoud, A.: A prioritized uplink call admission control algorithm for 3G WCDMA cellular systems with multi-services. In: IEE Conference Publication, pp. 173–177, No. 2005 in 11182 (2005)

    Google Scholar 

  74. Tan, W.K., Li, H.Y.: Mobile service: an empirical study of the behavior of 2/2.5G and 3G subscribers and implications to roll-out of WiMAX network. In: Proceedings - International Conference on Management and Service Science, MASS 2009 (2009)

    Google Scholar 

  75. Shahid, M., Shoulian, T., Shan, A.: Mobile broadband: comparison of mobile WiMAX and cellular 3G/3G+ technologies. Inf. Technol. J. 7(4), 570–579 (2008)

    Article  Google Scholar 

  76. Jaeho, J., Jinsung, C.: A cross-layer vertical handover between mobile WiMAX and 3G networks. In: IWCMC 2008 - International Wireless Communications and Mobile Computing Conference, pp. 644–649 (2008)

    Google Scholar 

  77. Murawwat, S., Ahmed, K.: Performance analysis of 3G and WiMAX as cellular mobile technologies. In: 2nd International Conference on Electrical Engineering, ICEE (2008)

    Google Scholar 

  78. Gozalvez, J.: WiMAX recognized as an IMT-2000 3G technology [mobile radio]. IEEE Veh. Technol. Mag. 2(4), 53–59 (2007)

    Article  Google Scholar 

  79. Matt, B., Li, C.: A survey of the security and threats of the IMT-advanced requirements for 4G standards. In: 2013 IEEE Conference Anthology, ANTHOLOGY 2013 (2013)

    Google Scholar 

  80. Deka, S., Sarma, K.: Joint source channel coding and diversity techniques for 3G/4G/LTE-A: a review of current trends and technologies. In: Research Anthology on Recent Trends, Tools, and Implications of Computer Programming, pp. 1–26 (2020)

    Google Scholar 

  81. Kumar, T., Moorthi, M.: Review on 4G antenna design for LTE application. In: Proceedings of the 3rd IEEE International Conference on Advances in Electrical and Electronics, Information, Communication and Bio-Informatics, AEEICB 2017, pp. 476–478 (2017)

    Google Scholar 

  82. Faheem, M., Zhong, S., Minhas, A., Azeem, B.: Ultra-low power small size 5.8 GHz RF transceiver design for WiMAX/4G applications. J. Beijing Inst. Technol. (Eng. Ed.) 28(1), 103–108 (2019)

    Google Scholar 

  83. Sreeja, T., Jayakumari, J.: Design and analysis of compact T shape slotted patch antenna for 4G WiMAX applications. Int. J. Enterp. Netw. Manag. 9(1), 1–10 (2018)

    Google Scholar 

  84. Medina-Acosta, G., et al.: 3GPP release-17 physical layer enhancements for LTE-M and NB-IoT. IEEE Commun. Stand. Mag. 6(4), 80–86 (2022)

    Article  Google Scholar 

  85. Dawaliby, S., Bradai, A., Pousset, Y.: Scheduling optimization for M2M communications in LTE-M. In: 2017 IEEE International Conference on Consumer Electronics, ICCE 2017, pp. 126–128 (2017)

    Google Scholar 

  86. Zhao, H., Hailin, J.: LTE-M system performance of integrated services based on field test results. In: Proceedings of 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference, IMCEC 2016, pp. 2016–2021 (2017)

    Google Scholar 

  87. Ratasuk, R., Mangalvedhe, N., Ghosh, A., Vejlgaard, B.: Narrowband LTE-M system for M2M communication. In: IEEE Vehicular Technology Conference (2014)

    Google Scholar 

  88. Abdujalilov, J., Turzhanova, K., Konshin, S., Solochshenko, A., Yakubov, B.: Analysis and improvement of the methods used for performance assessing of 4G network with NB-IoT technology for three scenarios of spectrum use in the 900 MHz range. In: 2020 International Conference on Information Science and Communications Technologies, ICISCT 2020 (2020)

    Google Scholar 

  89. Janakieska, M., Latkoski, P., Atanasovski, V.: Signaling in 4G/5G with NB-IoT support in 5G Option 3. In: 2020 55th International Scientific Conference on Information, Communication and Energy Systems and Technologies, ICEST 2020 - Proceedings, pp. 54–57 (2020)

    Google Scholar 

  90. Del Peral-Rosado, J., Lopez-Salcedo, J., Seco-Granados, G.: Impact of frequency-hopping NB-IoT positioning in 4G and future 5G networks. In: 2017 IEEE International Conference on Communications Workshops, ICC Workshops 2017, pp. 815–820 (2017)

    Google Scholar 

  91. Köpp, J.: NB-IoT and eMTC make 4G networks ready for the Internet of Things. Microw. J. 32 (2016)

    Google Scholar 

  92. McNair, J.: The 6G frequency switch that spares scientific services. Nature 606(7912), 34–35 (2022)

    Article  Google Scholar 

  93. Alhaj, N., Jamlos, M., Manap, S., Bakhit, A., Mamat, R.: A review of multiple access techniques and frequencies requirements towards 6G. In: Proceedings - 2022 RFM IEEE International RF and Microwave Conference, RFM 2022 (2022)

    Google Scholar 

  94. Ikegami, F., Yoshida, S., Takeuchi, T., Umehira, M.: Propagation factors controlling mean field strength on urban streets. IEEE Trans. Antennas Propag. 32(8), 822–829 (1984)

    Article  Google Scholar 

  95. Ambawade, D., Karia, D., Potdar, T., Lande, B., Daruwala, R., Shah, A.: Statistical tuning of Walfisch-Ikegami model in urban and suburban environments. In: 2010 Fourth Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation, pp. 538–543. IEEE (2010)

    Google Scholar 

  96. Garg, V.K.: Planning and Design of Wide-Area Wireless Networks. Morgan Kaufmann (2007)

    Google Scholar 

  97. Ahmadi, S.: LTE-Advanced. Academic Press (2014)

    Google Scholar 

  98. Meta: React (2023). https://react.dev/. Accessed 07 June 2023

  99. Pete, H.: Why did we build react? - react blog (2013). https://legacy.reactjs.org/blog/2013/06/05/why-react.html

  100. Xing, Y., Huang, J., Lai, Y.: Research and analysis of the front-end frameworks and libraries in e-business development. In: Proceedings of the 2019 11th International Conference on Computer and Automation Engineering, ICCAE 2019, pp. 68–72. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3313991.3314021

  101. Angular: Introduction to the Angular docs (2023). https://angular.io/docs. Accessed 07 June 2023

  102. Ember: Ember.js Guides (2023). https://guides.emberjs.com/release/. Accessed 07 June 2023

  103. BACKBONE.JS: Backbone.js (2023). https://backbonejs.org/. Accessed 07 June 2023

  104. (2023). https://react.dev/reference/react

  105. Bose, S.: Top 5 CSS frameworks for developers and designers (2023). https://www.browserstack.com/guide/top-css-frameworks

  106. Bootstrap: Introdution bootstrap (2023). https://getbootstrap.com/docs/4.1/getting-started/introduction/. Accessed 07 June 2023

  107. Foundation: Getting Started With Foundation CSS (2023). https://get.foundation/sites/docs-v5/css.html. Accessed 07 June 2023

  108. BULMA: Documentation: Free, open source, and modern CSS framework (2023). https://bulma.io/documentation/. Accessed 07 June 2023

  109. Skeleton: Skeleton: Responsive CSS Bilerplate (2023). http://getskeleton.com/. Accessed 07 June 2023

  110. Pete, H.: Documentation - Tailwind (2023). https://v2.tailwindcss.com/docs. Accessed 07 June 2023

  111. Adam, W.: Adam Wathan (2023). https://adamwathan.me/. Accessed 07 June 2023

  112. Tailwind Labs Inc.: Installation - Tailwind CSS (2023). https://tailwindcss.com/docs/installation. Accessed 30 May 2023

  113. Instituto Federal de Telecomunicaciones (2023). https://www.ift.org.mx/usuarios-telefonia-movil/sabias-que-la-telefonia-movil. Accessed 16 May 2023

  114. Nimavat, V., Kulkarni, G.: Simulation and performance evaluation of GSM propagation channel under the urban, suburban and rural environments. In: 2012 International Conference on Communication, Information & Computing Technology (ICCICT), pp. 1–5. IEEE (2012)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge partial economical support by projects 20230476, 20231067, 20230592, 20230593, 20231370 and 20230035, as well as EDI grant, provided by Secretaría de Investigación y Posgrado, Instituto Politécnico Nacional.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Hernández-Gómez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Casillas-Aviña, G.E., López-Balcázar, C.A., Yáñez-Casas, G.A., Hernández-Gómez, J.J., Arao-Quiroz, J.M., Mata-Rivera, M.F. (2023). Development of a Web-Based Calculator to Simulate Link Budget for Mobile Communications Systems at Urban Settlements. In: Mata-Rivera, M.F., Zagal-Flores, R., Barria-Huidobro, C. (eds) Telematics and Computing. WITCOM 2023. Communications in Computer and Information Science, vol 1906. Springer, Cham. https://doi.org/10.1007/978-3-031-45316-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45316-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45315-1

  • Online ISBN: 978-3-031-45316-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics