Skip to main content

APOS is Not Enough: Towards a More Appropriate Way to Estimate Computational Complexity in CIC Decimation Architectures

  • Conference paper
  • First Online:
Telematics and Computing (WITCOM 2023)

Abstract

The number of Additions Per Output Sample (APOS) is, currently, a standard way to estimate the computational complexity of Cascaded Integrator-Comb (CIC) decimators. This metric originates from a perspective with a high level of abstraction, where the amount of additions performed by the CIC hardware architecture accounts in general for the switching activity of the system, and therefore represents the power consumption in a direct proportion. In this paper we introduce an approach that leads towards a more appropriate way to estimate the computational complexity of CIC decimators, which considers the width of the internal buses of the architecture. We employ the pruning scheme by Hogenauer, and we provide explicit formulas to find, through a simple procedure, the number of Atomic Additions Per Output Sample (AAPOS), which accounts for the computational complexity on a bit-by-bit (i.e., atomic) basis. Three detailed examples are included to show how the AAPOS provides different results for systems with apparently equal computational complexity when estimated with APOS, leading to a more precise and trustable estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Harris, F.: Multirate Signal Processing for Communication Systems, 2nd edn. River Publishers, Gistrup (2021)

    Google Scholar 

  2. Luo, F.-L.: Digital Front-End in Wireless Communications and Broadcasting: Circuits and Signal Processing. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  3. Hogenauer, E.: An economical class of digital filters for decimation and interpolation. IEEE Trans. Acoust. Speech Sig. Process. 29(2), 155–162 (1981)

    Article  Google Scholar 

  4. Abinaya, A., Maheswari, M., Alqahtani, A.S.: Heuristic analysis of CIC filter design for next-generation wireless applications. Arab. J. Sci. Eng. 46, 1257–1268 (2021)

    Article  Google Scholar 

  5. Datta, D., Mitra, P., Dutta, H.S.: FPGA implementation of high performance digital down converter for software defined radio. Microsyst. Technol. (2019)

    Google Scholar 

  6. Gautam, D., Khare, K., Shrivastava, B.P.: A novel approach for optimal design of sample rate conversion filter using linear optimization technique. IEEE Access (2021)

    Google Scholar 

  7. Aggarwal, S.: Efficient design of decimation filters using linear programming and its FPGA implementation. Integr. VLSI J. 79, 94–106 (2021)

    Article  Google Scholar 

  8. Martens, E., et al.: RF-to-baseband digitization in 40 nm CMOS with RF bandpass Σ-Δ modulator and polyphase decimation filter. IEEE J. Solid State Circuit 47(4), 990–1002 (2012)

    Article  Google Scholar 

  9. Pavan, S., Shcreier, R., Temes, G.C.: Understanding Delta-Sigma Data Converters. Wiley, Hoboken (2017)

    Google Scholar 

  10. Troncoso-Romero, D.E., Jimenez, M.G.C., Meyer-Baese, U.: Alternative data paths for the Cascaded Integrator-Comb decimator. IEEE Sig. Process. Mag. 38(3), 194–200 (2021)

    Article  Google Scholar 

  11. Troncoso-Romero, D.E., Jimenez, M.G.C., Meyer-Baese, U.: Hardware-efficient decimation with spectral shape approximating the Nth power of a Dirichlet kernel. Circuits Syst. Sig. Process. 41, 4886–4905 (2022)

    Article  Google Scholar 

  12. Dudarin, A., Vucic, M., Molnar, G.: Decimation filters with minimum number of additions per output sample. Electron. Lett. 58(6), 246–248 (2022)

    Article  Google Scholar 

  13. Jovanovic, G.: Update on the CIC multistage decimation filter with a minimum number of additions per output sample (APOS): can we still decrease the number of APOS? IEEE Sig. Process. Mag. 40(2), 151–172 (2023)

    Article  Google Scholar 

  14. Troncoso-Romero, D.E.: Simplifying zero rotations in Cascaded Integrator-Comb decimators. IEEE Sig. Process. Mag. 40(3), 50–58 (2023)

    Article  Google Scholar 

  15. Meyer-Baese, U.: Digital Signal Processing with Field Programmable Gate Arrays, 4th edn. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-45309-0

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Ernesto Troncoso Romero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Romero, D.E.T., Pacheco, J.C.R., Borges, J.A.L., Cruz, H.T. (2023). APOS is Not Enough: Towards a More Appropriate Way to Estimate Computational Complexity in CIC Decimation Architectures. In: Mata-Rivera, M.F., Zagal-Flores, R., Barria-Huidobro, C. (eds) Telematics and Computing. WITCOM 2023. Communications in Computer and Information Science, vol 1906. Springer, Cham. https://doi.org/10.1007/978-3-031-45316-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45316-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45315-1

  • Online ISBN: 978-3-031-45316-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics