Abstract
Fisher’s information measure (FIM) allows to study the complexities associated to random signals and systems and has been used in the literature to study EEG and other physiological signals. In this paper, various time-domain definitions of Fisher’s information are extended to the wavelet domain and closed-form expressions for each definition are obtained for fractal signals of parameter \(\alpha \). Fisher information planes are computed in a range of \(\alpha \) and based on these, characteristics, properties, and the effect of signal length is also identified. Moreover, based on this, a complete characterization of fractals by wavelet Fisher’s information is presented and the potential application of each definition in practical fractal signal analysis is also highlighted.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Goldberger, A.L., Amaral, L.A., Hausdorff, J.M., Ivanov, P.C., Peng, C.K., Stanley, H.E.: Fractal dynamics in physiology: alterations with disease and aging. Proc. Nat. Acad. Sci. 99(suppl 1), 2466–2472 (2002)
Stephen, D.G., Anastas, J.: Fractal fluctuations in gaze speed visual search. Attention Percept. Psychophys. 73(3), 666–677 (2011)
Ducharme, S.W., van Emmerik, R.E.: Fractal dynamics, variability, and coordination in human locomotion. Kinesiol. Rev. 7(1), 26–35 (2018)
Sen, J., McGill, D.: Fractal analysis of heart rate variability as a predictor of mortality: a systematic review and meta-analysis. Chaos Interdisc. J. Nonlin. Sci. 28(7), 072101 (2018)
Frezza, M.: A fractal-based approach for modeling stock price variations. Chaos Interdisc. J. Nonlin. Sci. 28(9), 091102 (2018)
Bu, L., Shang, P.: Scaling analysis of stock markets. Chaos Interdisc. J. Nonlin. Sci. 24(2), 023107 (2014)
Gilmore, M., Yu, C.X., Rhodes, T.L., Peebles, W.A.: Investigation of rescaled range analysis, the Hurst exponent, and long-time correlations in plasma turbulence. Phys. Plasmas 9(4), 1312–1317 (2002)
Peng, X.: A discussion on fractal models for transport physics of porous media. Fractals 23(03), 1530001 (2015)
Beran, J., Sherman, R., Taqqu, M.S., Willinger, W.: Long-range dependence in variable-bit-rate video traffic. IEEE Trans. Commun. 43(2/3/4), 1566–1579 (1995)
Zhang, C., Cui, H., He, Z., Lin, S., Degang, F.: Fractals in carbon nanotube buckypapers. RSC Adv. 6(11), 8639–8643 (2016)
Fernandes, M.A., Rosa, E.A.R., Johann, A.C.B.R., Grégio, A.M.T., Trevilatto, P.C., Azevedo-Alanis, L.R.: Applicability of fractal dimension analysis in dental radiographs for the evaluation of renal osteodystrophy. Fractals 24(01), 1650010 (2016)
Mandelbrot, B.B., Wallis, J.R.: Noah, Joseph, and operational hydrology. Water Resour. Res. 4(5), 909–918 (1968)
Eke, A., et al.: Physiological time series: distinguishing fractal noises from motions. Pflügers Archiv 439(4), 403–415 (2000)
Eke, A., Herman, P., Kocsis, L., Kozak, L.R.: Fractal characterization of complexity in temporal physiological signals. Physiol. Meas. 23(1), R1 (2002)
Delignieres, D., Ramdani, S., Lemoine, L., Torre, K., Fortes, M., Ninot, G.: Fractal analyses for short time series: a re-assessment of classical methods. J. Math. Psychol. 50(6), 525–544 (2006)
Peng, C.K., Buldyrev, S.V., Havlin, S., Simons, M., Stanley, H.E., Goldberger, A.L.: Mosaic organization of DNA nucleotides. Phys. Rev. E 49(2), 1685 (1994)
Lin, T.-K., Fajri, H.: Damage detection of structures with detrended fluctuation and detrended cross-correlation analyses. Smart Mater. Struct. 26(3), 035027 (2017)
Kwapień, J., Oświkecimka, P., Drożdż, S.: Detrended fluctuation analysis made flexible to detect range of cross-correlated fluctuations. Phys. Rev. E 92(5), 052815 (2015)
Ferreira, P.: What detrended fluctuation analysis can tell us about NBA results. Phys. A 500, 92–96 (2018)
Abry, P., Veitch, D.: Wavelet analysis of long-range-dependent traffic. IEEE Trans. Inf. Theory 44(1), 2–15 (1998)
Stoev, S., Taqqu, M.S., Park, C., Marron, J.S.: On the wavelet spectrum diagnostic for Hurst parameter estimation in the analysis of internet traffic. Comput. Netw. 48(3), 423–445 (2005)
Serinaldi, F.: Use and misuse of some Hurst parameter estimators applied to stationary and non-stationary financial time series. Phys. A 389(14), 2770–2781 (2010)
Taqqu, M.S., Teverovsky, V., Willinger, W.: Estimators for long-range dependence: an empirical study. Fractals 3(04), 785–798 (1995)
Gallant, J.C., Moore, I.D., Hutchinson, M.F., Gessler, P.: Estimating fractal dimension of profiles: a comparison of methods. Math. Geol. 26(4), 455–481 (1994)
Pilgram, B., Kaplan, D.T.: A comparison of estimators for 1f noise. Phys. D Nonlin. Phenom. 114(1–2), 108–122 (1998)
Stadnitski, T.: Measuring fractality. Front. Physiol. 3, 127 (2012)
Beran, J.: Statistics for Long-Memory Processes. Chapman & Hall, Boca Raton (1994)
Percival, D.B.: Stochastic models and statistical analysis for clock noise. Metrologia 40, S289–S304 (2003)
Lee, I.W.C., Fapojuwo, A.O.: Stochastic processes for computer network traffic modelling. Comput. Commun. 29, 1–23 (2005)
Veitch, D., Abry, P.: A wavelet based joint estimator of the parameters of long-range dependence. IEEE Trans. Info. Theory 45, 878–897 (1999)
Soltani, S., Simard, P., Boichu, D.: Estimation of the self-similarity parameter using the wavelet transform. Signal Process. 84, 117–123 (2004)
Pesquet-Popescu, B.: Statistical properties of the wavelet decomposition of certain non-gaussian self-similar processes. Signal Process. 75, 303–322 (1999)
Abry, P., Goncalves, P., Levy-Vehel, J.: Scaling, Fractal and Wavelets. Wiley, Hoboken (2009)
Flandrin, P.: Wavelet analysis and synthesis of fractional Brownian motion. IEEE Trans. Info. Theory 38, 910–917 (1992)
Zunino, L., Perez, D.G., Garavaglia, M., Rosso, O.A.: Wavelet entropy of stochastic processes. Phys. A 379, 503–512 (2007)
Perez, D.G., Zunino, L., Martin, M.T., Garavaglia, M., Plastino, A., Rosso, O.A.: Model-free stochastic processes studied with q-wavelet-based information tools. Phys. Lett. A 364, 259–266 (2007)
Kowalski, A.M., Plastino, A., Casas, M.: Generalized complexity and classical-quantum transition. Entropy 11, 111–123 (2009)
Martin, M.T., Perez, J., Plastino, A.: Fisher information and non-linear dynamics. Phys. A 291, 523–532 (2001)
Martin, M.T., Pennini, F., Plastino, A.: Fisher’s information and the analysis of complex signals. Phys. A 256, 173–180 (1999)
Telesca, L., Lapenna, V., Lovallo, M.: Fisher information measure of geoelectrical signals. Phys. A 351, 637–644 (2005)
Sánchez-Moreno, P., Yánez, R.J., Dehesa, J.S.: Discrete densities and fisher information. In: Proceedings of the 14th International Conference on Difference Equations and Applications. Difference Equations and Applications, pp. 291–298
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Pacheco, J.C.R., Romero, D.E.T., Cruz, H.T., Borges, J.A.L. (2023). Fractals and Wavelet Fisher’s Information. In: Mata-Rivera, M.F., Zagal-Flores, R., Barria-Huidobro, C. (eds) Telematics and Computing. WITCOM 2023. Communications in Computer and Information Science, vol 1906. Springer, Cham. https://doi.org/10.1007/978-3-031-45316-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-45316-8_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-45315-1
Online ISBN: 978-3-031-45316-8
eBook Packages: Computer ScienceComputer Science (R0)