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Abstract. In this paper, we propose an approximating framework for
analyzing parametric Markov models. Instead of computing complex ra-
tional functions encoding the reachability probability and the reward
values of the parametric model, we exploit the scenario approach to syn-
thesize a relatively simple polynomial approximation. The approxima-
tion is probably approximately correct (PAC), meaning that with high
confidence, the approximating function is close to the actual function
with an allowable error. With the PAC approximations, one can check
properties of the parametric Markov models. We show that the scenario
approach can also be used to check PRCTL properties directly – with-
out synthesizing the polynomial at first hand. We have implemented our
algorithm in a prototype tool and conducted thorough experiments. The
experimental results demonstrate that our tool is able to compute poly-
nomials for more benchmarks than state-of-the-art tools such as PRISM
and Storm, confirming the efficacy of our PAC-based synthesis.

1 Introduction

Markov models (see, e.g., [45]) have been widely applied to reason about quanti-
tative properties in numerous domains, such as networked, distributed systems,
biological systems [33], and reinforcement learning [4,49]. Properties analyzed on
Markov models can either be simple, such as determining the value of the prob-
ability that a certain set of unsafe states is reached and how an expected reward
value compares with a specified threshold, or complex, involving employing tem-
poral logics such as PCTL [8,31] and PRCTL [1]. To verify these properties, var-
ious advanced tools have been developed, such as PRISM [38], Storm [22,32],
MRMC [36], CADP 2011 [25], PROPhESY [21] and IscasMc [29].

In this paper we consider parametric discrete time Markov chains (pDTMCs),
whose transition probabilities are not required to be constants, but can depend
on a set of parameters. For this type of models, the value of the analyzed prop-
erty can be described as a function of the parameters, mapping either to truth
values or to numbers. In many cases, these functions are rational functions, that
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is, fractions of co-prime polynomials. The exact rational function is commonly
challenging to compute as it often involves polynomials with very high degree [5].

Contribution of the paper. In this work, we propose an alternative approach
to obtain the function fφ describing the value of the analyzed property φ in
the given pDTMC. The main idea is to learn a polynomial with low degree to
approximate the actual function fφ in pDTMC and pDTMRM. Exploiting the
scenario approach [14, 16], we obtain an approximating function with probably
approximately correct (PAC) guarantee, i.e., with high confidence 1 − η, the
probability that the approximation is within an error margin λ is at least 1− ε.
The obtained function can then be used in synthesizing parameters and analyzing
properties of fφ.

Experimental results we performed show that our prototype Tool can solve
more properties under the same conditions than the state-of-the-art verification
tools Storm and PRISM, and provide PAC approximations with statistical
guarantee. We can use the PAC approximation to check the safe region of the
parameter space and other properties, such as whether the probabilities of sat-
isfying the given PRCTL formulas remain within a certain range on changing
parameters’ values. Also, compared with the Taylor expansion to approximate
the actual function fφ, PAC approximation can approximate fφ more accurately:
the L2 norm of the distance between fφ and the PAC approximation can be even
hundreds of times smaller than that of the Taylor expansion. We also extend the
scenario approach to reward properties; we use PAC approximation to estimate
the lower bound of the expectation of fφ with respect to a probability measure
P over the domain X of the parameters: the quadratic polynomial can estimate
the expectation

∫
X
fφ(v) dP (v) accurately while being easy to compute.

Related work. Model checking of parametric Markov models is not a new
area and a number of related works exist, each with different strengths and
weaknesses. In the following, we demarcate our work from the existing ones.

Daws has devised a language-theoretic approach to solve the reachability
problem in parametric Markov chains [20]. In this approach, the model is viewed
as a finite automaton. Based on the state elimination approach [34], the regular
expression describing the language of such an automaton is computed. In a post-
processing step, this regular expression is transformed into a rational function
over the parameters of the model.

In a following work [28], the method has been improved by intertwining the
state elimination and the computation of the rational function. This improved
algorithm has been implemented in the tool PARAM [27]. PARAM also sup-
ports bounded reachability, relying on matrix-vector multiplication with ratio-
nal function entries, and reachability rewards [9, 23]. For the latter, the model
is extended with parametric rewards assigned to both states and transitions.
Thereby, one can consider the expected accumulated reward until a given set of
states is reached. All these works [27, 28] compute the precise rational function
that describes the property of interest. Unfortunately, it is challenging to eval-
uate it, due to the large coefficients and high exponents. Moreover, the works
discussed above do not consider properties specified by a temporal logic.
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Several improvements have been proposed in later works. Jansen et al. [35]
perform the state elimination in a more systematic order, often leading to better
performance in practice. The work [24] uses arithmetic circuits, which are DAG-
like structures, to represent such rational functions. A further work [26] follows
a related approach to solve (potentially nested) PRCTL formulas for Markov
decision processes: the state-space is divided into hyperrectangles, and one has
to show that a particular decision is optimal for a whole region. The work [5] im-
proves the computation of the rational function by means of a fraction-free Gaus-
sian elimination; the experimental evaluation confirms its effectiveness. There
are also methods for checking parametric continuous time Markov chains [30],
by using a scenario approach [3] or by being based on Gaussian processes [11,12].

The scenario approach was first introduced in [13], based on constraint sam-
pling to deal with uncertainty in optimization. The works [14, 16, 17] study a
probabilistic solution framework for robust properties. The work [17] considers
the min-max sample-based uncertain convex optimization problems in the pres-
ence of stochastic uncertainty, which is called the “min-max scenario program”.
The work [43] proposes a method to solve chance constrained optimization prob-
lems lying between robust optimization and scenario approach, which does not
require prior knowledge of the probability distribution of the parameters. The
work [15] based on [13, 14] allows violating some of the sampled constraints in
order to improve the optimization value, and the work [48] expands the scenario
optimization problem to multi-stage problems. Recently, the scenario approach
has been applied to verify safety properties of black-box continuous time dy-
namical systems [50] and the robustness of neural networks [42].

The most related to our work is [2], which also applies the scenario approach
for analyzing parametric Markov chains and Markov decision processes. The
main difference with our work is that in [2], the authors compute the probabil-
ity that the instances of the parametric MDP satisfy a given property φ with
PAC-guarantee, by sampling the parameter values according to some unknown
distribution; each MDP instance is then checked independently with respect to
φ. Instead, our work targets at computing an approximation of the complicated
function fφ –such as the one corresponding to the reachability probability φ–
depending on the parameters; we obtain this by sampling instances of the pa-
rameter values to compute the value of fφ on them and then synthesize the
approximation with a certain confidence. Our framework can bound the error
between the actual function and the approximation we compute. Moreover, as a
side result, our PAC approximations can be used for visualizing the reachability
probability, finding counterexamples, and analyzing properties that the original
functions may satisfy. Extending our approach to parametric MDPs seems fea-
sible, as long as we treat the MDP strategy as in [2], i.e., we allow the strategy
to change for the different MDP instances; that is, the strategy can also depend
on the parametric values while solving the instantiated MDP with respect to φ.
We leave the formalization of the extension to parametric MDPs to future work.

Organization of the paper. After giving in Sect. 2 some preliminaries, models,
and logic we use in this paper, in Sect. 3 we present our PAC-based model
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Fig. 1. An example of discrete time Markov chain

checking approach; we evaluate it empirically in Sect. 4 before concluding the
paper in Sect. 5 with some final remarks.

Due to space constraints, non-trivial proofs are provided in the appendix.

2 Preliminaries

In this section, we first recall DTMCs, a well-know probabilistic model (see,
e.g., [6]), reward structures, the probabilistic logic PRCTL we adopt to express
properties on them, and then consider their extension with parameters.

2.1 Probabilistic Models

Definition 1. Given a finite set of atomic propositions AP, a (labelled) discrete
time Markov chain (DTMC) D is a tuple D = (S, s̄,P, L) where S is a finite set
of states; s̄ ∈ S is the initial state; P : S × S → [0, 1] is a transition function
such that for each s ∈ S, we have

∑
s′∈S P(s, s′) = 1; and L : S → 2AP is a

labelling function.

The underlying graph of a DTMC D = (S, s̄,P, L) is a directed graph ⟨V,E⟩
with V = S as vertexes and E = { (s, s′) ∈ S × S |P(s, s′) > 0 } as edges.

As an example of DTMC, consider the DTMC D shown in Fig. 1. D has
5 states (from s0 to s4), with s0 being the initial one (marked with the gray
background and the small incoming arrow); transitions with probability larger
than 0 are depicted as arrows, so for example we have P(s0, s1) = 0.8 > 0, while
the labels assigned to each state are shown on the top-right corner of the state
itself, e.g., L(s2) = {�} while L(s0) = ∅.

DTMCs can be equipped with reward structures that assign values to states
and transitions; such reward structures can be used to count the number of
transitions taken so far or to attach “costs” or “gains” to the DTMC.

Definition 2. A discrete time Markov reward model (DTMRM) R is a pair
R = (D, r) where D is a DTMC and r : S ∪ (S×S) → R≥0 is a reward function.

For example, the reward function c defined as c(s) = 0 and c(s, s′) = 1 for
each s, s′ ∈ S allows us to “count” the number of steps taken by the DTMC.

Let D be a DTMC; a path π of D is a (possibly infinite) sequence of states
π = s0s1s2 · · · such that for each meaningful i ∈ N, we have P(si, si+1) > 0;
we write πi to indicate the state si. We let Paths∗(D) and Paths(D) denote
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the sets of all finite and infinite paths of D, respectively. Given a finite path
π = s0s1s2 · · · sn, we denote by |π| the number of states n+ 1 of π.

Given a finite path π, the cylinder of π, denoted by Cyl(π), is the set of
infinite paths having π as prefix. Given a state s ∈ S, we define the probability

of the cylinder set of π by PrDs
(
Cyl(π)

)
= δs(π0) · ∏|π|−1

i=0 P(πi, πi+1), where

δs(s
′) is 1 if s′ = s and 0 otherwise. For a given DTMC D, PrDs can be uniquely

extended to a probability measure over the σ-algebra generated by all cylinder
sets; see [6] for more details. In the remainder of the paper, we might just write
Prs instead of PrDs when D is clear from the context.

Given a DTMRM R = (D, r), similarly to PrDs we can define the expected
cumulative reward ExpRewR

s as follows (cf. [6,28,37]): given set T ⊆ S of states,
ExpRewR

s (T ) is the expectation of the random variable XT : Paths(D) → R≥0

with respect to the probability measure PrDs defined as follows:

XT (π) =





0 if π0 ∈ T ,

∞ if πi /∈ T for each i ∈ N,∑min{n∈N |πn∈T }−1
i=0 r(πi) + r(πi, πi+1) otherwise.

2.2 Probabilistic Reward Logic PRCTL

To express properties about probabilistic models with rewards, we use formulas
from PRCTL, the Probabilistic Reward CTL logic [1], that extends PCTL [8,31]
with rewards. Such formulas are constructed according to the following grammar,
where φ is a state formula and ψ is a path formula:

φ ::= a | ¬φ | φ ∧ φ | P▷◁p(ψ) | R▷◁r(Fφ)

ψ ::= Xφ | φU φ | φU≤k φ

where a ∈ AP , ▷◁ ∈ {<,≤,≥, >}, p ∈ [0, 1], r ∈ R≥0, and k ∈ N. We use freely
the usually derived operators, like φ1 ∨ φ2 = ¬(¬φ1 ∧ ¬φ2), tt = a ∨ ¬a, and
Fφ = ttU φ. The PCTL logic is just PRCTL without the R▷◁r(Fφ) operator.

The semantics of a state formula φ and of a path formula ψ is given with
respect to a state s and a path π of a DTMRM R = (D, r), respectively. The
semantics is standard for all Boolean and temporal operators (see, e.g., [6, 18]);
for the P▷◁p operator, it is defined as s |= P▷◁p(ψ) iff Prs({π ∈ Paths(D) |π |=
ψ }) ▷◁ p and, similarly, s |= R▷◁r(ψ) iff ExpRews({π ∈ Paths(D) |π |= ψ }) ▷◁ r.

With some abuse of notation, we write R |= φ if s̄ |= φ; we also consider
P=?(ψ) and R=?(ψ) as PRCTL formulas, asking to compute the probability (resp.
expected reward) of satisfying ψ in the initial state s̄ of R, i.e., to compute the
value Pr s̄({π ∈ Paths(D) |π |= ψ }) (resp. ExpRew s̄({π ∈ Paths(D) |π |= ψ })).

Consider the DTMC D shown in Fig. 1. As an example of PRCTL formula,
there is P=?(F�) that asks to compute the probability of eventually reaching a
state labelled with �, for which we have P=?(F�) ≈ 0.78.
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Fig. 2. An example of parametric discrete time Markov chain

2.3 Parametric Models

We now recall the definition of parametric models from [26, 28]. Given a finite
set of variables, or parameters, V = {v1, . . . , vn}, let v = (v1, . . . , vn) denote
the vector of parameters and range: V → R be the function assigning to each
parameter v ∈ V its closed interval range(v) = [Lv, Uv] ⊆ R of valid values.
Given the field PV of the polynomials with variables V, a rational function f

is a fraction f(v) = g1(v)
g2(v)

where g1, g2 ∈ PV; let FV denote the set of rational

functions. An evaluation ν is a function ν : V → R such that for each v ∈ V,
ν(v) ∈ range(v). Given f = g1

g2
∈ FV and an evaluation ν, we denote by f⟨ν⟩

the rational number f(ν(v)) = f(ν(v1), . . . , ν(vn)); we assume that f⟨ν⟩ is well
defined for each evaluation ν, that is, g2⟨ν⟩ ≠ 0 for each evaluation ν.

Definition 3. Given a finite set of parameters V, a parametric discrete time
Markov chain (pDTMC) DV with parameters V is a tuple DV = (S, s̄,P, L)
where S, s̄, and L are as in Def. 1, while P : S × S → FV.

Definition 4. Given a pDTMC DV = (S, s̄,P, L), an evaluation ν induces the
DTMC D⟨ν⟩ = (S, s̄,Pν , L), provided that Pν(s, s′) = P(s, s′)⟨ν⟩ for each s, s′ ∈
S satisfies the conditions given in Def. 1.

The extension to parametric DTMRMs (pDTMRMs) is trivial: a pDTMRM
RV is just a pair RV = (DV, r) where DV is a pDTMC and r is a reward function.

To simplify the presentation and ensure that the underlying graph of DV

does not depend on the actual evaluation, we make the following assumption:

Assumption 1 (cf. [26]). Given a pDTMC DV, for each pair of evaluations
ν1 and ν2, for the induced DTMCs DV⟨ν1⟩ and DV⟨ν2⟩ we have that for each
s, s′ ∈ S, it holds that Pν1

(s, s′) = 0 if and only if Pν2
(s, s′) = 0.

By this assumption, either a state s′ has probability 0 to be reached from s
(i.e., it is not reachable) independently of the evaluation, or it is always reachable,
with possibly different probability values.

As an example of pDTMC, consider the model shown in Fig. 2: now, p and
q are the parameters, with e.g. range(p) = [0.01, 0.09] and range(q) = [0.25, 0.8].
One evaluation is ν(p) = 0.05 and ν(q) = 0.8, which gives us the DTMC shown
in Fig. 1. The rational function corresponding to the PRCTL formula P=?(F�)

is q2

q+2p−2pq ≈ 0.78 when evaluated on ν, as one would expect.
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3 Probably Approximately Correct Function Synthesis

In this section, we show how to approximate the actual functions with low-degree
polynomials, while providing a statistical PAC guarantee on the closeness of the
approximating polynomial with the approximated function.

3.1 Probably Approximately Correct Models

Our method provides a PAC approximation, with respect to the given signif-
icance level η and error rate ε. First, we define the PAC approximation of a
generic function f as follows.

Definition 5. Given a set of n variables V, their domain X =
∏n

i=1 range(vi),
and a function f : X → R, let P be a probability measure over X, λ ∈ R≥0 be
a margin to measure the approximation error, and ε, η ∈ (0, 1] be an error rate
and a significance level, respectively.

We say that the polynomial f̃ ∈ PV is a PAC approximation of f with (ε, η)-
guarantee if, with confidence 1 − η, the following condition holds:

P (|f̃(v) − f(v)| ≤ λ) ≥ 1 − ε.

In this work, we assume that P is the uniform distribution on the domain
X =

∏n
i=1 range(vi) unless otherwise specified. Intuitively, our aim is to make

the PAC approximation f̃ as close as possible to f , so we introduce the margin
λ to describe how close the two functions are. The two statistical parameters
η and ε are the significance level and error rate, respectively; they are used to
measure how often the difference between f̃ and f respects the threshold λ, so
we can adjust these parameters to change the quality of the approximation.

3.2 The Scenario Approach

PAC approximation is inspired by the scenario approach proposed in [14, 16].
We consider the following class of convex optimization problems:

min
θ∈Θ⊆Rm

aT θ

s.t. fω(θ) ≤ 0 ∀ω ∈ Ω
(1)

under the assumption that fω : Θ → R is a convex function of θ ∈ Θ for every
ω ∈ Ω. Moreover, we assume that the domains Θ and Ω are convex and closed.

The main obstacle on solving the optimization problem (1) is that in general
it has infinitely many constraints, due to the convexity of Ω. Instead of solving
the problem (1), it was proposed in [14] to use finitely many sampled points that
provide statistical guarantee on the error rate made with respect to the exact
solution of the problem (1), which is formalized as follows.
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Definition 6. Given a convex and closed set Ω and a constant l ∈ N, let P
be a probability measure over Ω and ω1, . . . , ωl be l independent identically dis-
tributed samples taken from Ω according to P . The scenario design problem
corresponding to the problem (1) is defined as

min
θ∈Θ⊆Rm

aT θ

s.t.

l∧

i=1

fωi(θ) ≤ 0 ωi ∈ Ω
(2)

The optimization problem (2) can be seen as the relaxation of the optimiza-
tion problem (1), since we do not require that the solution θ∗l of the problem (2)
satisfies all constraints fω(θ∗l ) ≤ 0 for each ω ∈ Ω, but only the constraints
corresponding to the l samples from Ω according to P . The issue now is how to
provide enough guarantee that the optimal solution θ∗l of (2) also satisfies the
other constraints fω(θ) ≤ 0 with ω ∈ Ω \ {ωi}li=1 we have not considered.

To answer this question, an error rate ε is introduced to bound the proba-
bility that the solution θ∗l violates the constraints of problem (1); we denote by
η the significance level with respect to the random sampling solution algorithm.
Statistics theory ensures that as the number of samples l increases, the probabil-
ity that the optimal solution of the optimization problem (2) violates the other
unseen constraints will tend to zero rapidly. The minimal number of sampled
points l is related to the error rate ε ∈ (0, 1] and significance level η ∈ (0, 1] by:

Theorem 1 ([16]). If the optimization problem (2) is feasible and has a unique
optimal solution θ∗l , then P (fω(θ∗l ) > 0) < ε, with confidence at least 1 − η,
provided that the number of constraints l satisfies

l ≥ 2

ε
·
(

ln
1

η
+m

)
,

where m is the dimension of θ, that is, θ ∈ Θ ⊆ Rm, ε and η are the given error
rate and significance level, respectively.

In Theorem 1, we assume that the optimization problem (2) has a unique
optimal solution θ∗l . This is not a restriction in general, since for multiple optimal
solutions we can just use the Tie-break rule [14] to get a unique optimal solution.

3.3 Synthesizing Parametric Functions

We now apply the above scenario approach to the synthesis of the paramet-
ric functions for pDTMRMs. Given a pDTMRM RV = (DV, r) with DV =
(S, s̄,P, L), let v denote the vector of parameters (v1, . . . , vn) of DV. For a
PRCTL state formula φ, the analytic function fφ(v), representing the prob-
ability or the expected reward of the paths satisfying φ in the pDTMRM RV,
can be a rational function with a very complicated form [27, 28]. Our aim is to
approximate the function fφ(v) with some low degree polynomial f̃φ(v), such

as a quadratic polynomial f̃φ(v) = c0 + c1 ·v+ c2 ·v2 = (c0, c1, c2) · (1,v,v2)T .

8



The reason why we choose a polynomial f̃φ(v) with low degree to fit the

rational function fφ(v) is that the graph of polynomials f̃φ(v) and original

functions fφ(v) are both surfaces and the polynomial f̃φ(v) can approximate
the rational function fφ(v) well if we synthesize appropriately the coefficients
c = (c0, c1, c2) of the polynomial by learning them.

It is worth mentioning that no matter how complicated the function fφ(v) is
(it could also be any kind of function other than rational functions), we can still
obtain an approximating polynomial f̃φ(v) of fφ(v) by solving an optimization
problem, and utilize it to analyze various properties the original function fφ(v)
may satisfy. In the remainder of this section, we show how we synthesize such
coefficients c, and thus the polynomial; we first introduce some notations.

Given the vector of parameters v and a degree d ∈ N, we denote by vd

the vector of monomials vd = (vα)∥α∥1=d, where each monomial vα is defined as
vα = vα1

1 vα2
2 · · · vαn

n , with α = (α1, . . . , αn) ∈ Nn and ∥α∥1 =
∑n

i=1 αi. Then, we
associate a coefficient ci to each of the monomials in the vector (vi)di=0, obtaining

the PAC approximation f̃(v) =
∑d

i=0 ci ·vi. For example, if the pDTMC DV has

two parameters v1 and v2, then for d = 2 we get the quadratic polynomial f̃(v) =
c0+c1 ·v+c2 ·v2 = c0+(c11 ·v1+c12 ·v2)+(c21 ·v21+c22 ·v1 ·v2+c23 ·v22). In general,
for n parameters and a polynomial of degree d, we need

(
n+d
n

)
coefficients.

Given the PAC approximation schema f̃(v) =
∑d

i=0 ci·vi = c·(1,v, · · · ,vd)T ,
we solve the following Linear Programming (LP) problem to learn the coefficients
c of the polynomial f̃(v):

min
c,λ

λ

s.t. − λ ≤ f(v) − c · (1,v, . . . ,vd)T ≤ λ, ∀v ∈ X,

c ∈ R(n+d
n ), λ ≥ 0

(3)

where f(v) is the analytic function on the domain X =
∏n

i=1 range(vi). Note
that for pDTMRMs we do not need to compute the rational function fφ used as
f in problem (3) to get its value on v, since we can first instantiate the pDTMRM
with v and then compute the value of φ in the instantiated DTMRM.

Given the error rate ε and the significance level η, by Theorem 1 we need
only to independently and identically sample at least l ≥ 2

ε

(
ln 1

η +
(
n+d
n

)
+ 1
)

points X̃ = {vi}li=1 to form the constraints used in the relaxed LP problem, as
done in the problem (2). Concretely, we get the following LP problem:

min
c,λ

λ

s.t.

l∧

i=1

−λ ≤ f(vi) − c · (1,vi, · · · ,vd
i )T ≤ λ, ∀vi ∈ X̃,

c ∈ R(n+d
d ), λ ≥ 0.

(4)

We solve the optimization problem (4) to get the coefficients c, hence the PAC
approximation f̃ of the original function f , with the statistical guarantees given
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by Def. 5; in the context of a pDTMRM RV and a PRCTL state formula φ, we
get the PAC approximation f̃φ of the original function fφ.

3.4 PRCTL Property Analysis

Given the probabilistic formula φ = P=?(ψ) with path formula ψ, we can obvi-
ously use the PAC approximation f̃φ to check whether the domain of parameters
X is safe, with PAC guarantee. In this section, we introduce a direct PAC based
approach for checking domain’s safety, without having to learn the approxima-
tions first. Then, we consider linear approximations and discuss how counterex-
amples can be generated in this case before showing how the polynomial PAC
approximation f̃φ can be used to analyze global properties of fφ over the whole
parameter space X. Lastly, we present how to extend the approach to the reward
formula φ = R=?(Fφ

′).

Definition 7 (Safe Region). Let X =
∏n

i=1 range(vi) be the domain of a set
of n parameters V. Given a function f : X → R≥0 and a safety level ζ ∈ R≥0,
we say that the point v ∈ V is safe if and only if f(v) < ζ; we call X safe if and
only if each v ∈ V is safe.

Intuitively, we hope that the probability of the pDTMRM RV to reach an
unsafe state under any choice of the parameters will be less than the given safety
level, which is the motivation for defining the safe region. To check whether
the domain X of the parameters is safe, we can resort to solve the following
optimization problem with respect to the given error rate ε and significance
level η, and compare the obtained optimal solution λ∗ with ζ:

min λ

s.t. f(v) ≤ λ ∀v ∈ X̃,
(5)

where X̃ ⊆ X is a set of samples such that |X̃| ≥
⌈
2
ε · (ln 1

η + 1)
⌉
. The optimiza-

tion problem (5) can be solved in time O(|X̃|), since it only needs to compute
the maximum value of fφ(v) for v ∈ X̃ as the optimal solution λ∗. Although the
calculation is very simple, polynomials with degree 0, i.e., constants, also have
good probability and statistical meaning, so we have the following result as a
direct consequence of the definitions:

Lemma 1. Given the safety level ζ, if the optimal solution λ∗ of the problem (5)
satisfies λ∗ < ζ, then the domain X is safe with (ε, η)-guarantee. Otherwise, if
λ∗ ≥ ζ, then the parameter point v∗ ∈ X̃ corresponding to λ∗ is unsafe.

By Lemma 1, we can analyze with (ε, η)-guarantee whether the parameter
space is safe or not. For example, consider the pDTMC DV shown in Fig. 2 and
the safety property P<0.8(F(×c∨×o)). If we set ε = η = 0.05, by sampling in the
region X = [0.01, 0.09] × [0.25, 0.8] at least 160 points and solving the resulting
optimization problem (5), we get the optimal value λ∗ = 0.747 by rounding to
three decimals. Since λ∗ = 0.747 < 0.8, by Lemma 1, the region X is safe with
(0.05, 0.05)-guarantee.
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Fig. 3. The rational function fφ(p, q) =
q2

q+2p−2pq
and its linear approximations f̃φ(p, q)

with different choices of ε and η

Linear PAC Approximation and Counterexamples. Since constants can
approximate the maximum value of the function f with the given (ε, η)-PAC
guarantee, linear functions can also be used to approximate f , which are more
precise than constants. Also, we can check whether there is an unsafe region in
the domain of parameters X with a given confidence, by the following Lemma 2,
and further search counterexamples by linear PAC approximations.

Lemma 2. Given the domain of parameters X, a function f : X → R≥0, and

a probability measure P over X, let f̃ be a PAC approximation of f with (ε, η)-
guarantee. Given the safety level ζ ∈ R≥0, if for each v ∈ X we have f̃(v)+λ < ζ,

then P (f(v) < ζ) ≥ 1 − ε holds with confidence 1 − η. In turn, if P (f̃(v) − λ >
ζ) > ε, then there exist v ∈ X such that f(v) > ζ holds with confidence 1 − η.

The plots in Fig. 3 show the results of applying linear PAC approximation on
the function fφ(p, q), with φ = P=?(F�), for the pDTMC DV shown in Fig. 2.
We sampled 280 points for ε = η = 0.05 and 2182 points for ε = 0.01 and
η = 0.001, respectively, according to Thm. 1. The plot on the left, where we fix
the parameter p = 0.05, shows that even if we sample just 280 points, fφ(p, q)

and f̃φ(p, q) are closer than the computed margin λ. For the case ε = η =

0.05, the linear approximation is f̃φ(p, q) = −0.035 + 1.063 ∗ q − 0.718 ∗ p with
λ = 0.011 by rounding the coefficients to three decimals. We can easily check
that for each (p, q) ∈ X we have f̃φ(p, q) + λ < 0.85 by linear programming, so
X = [0.01, 0.09] × [0.25, 0.8] is a 0.85-safe region with respect to fφ(p, q) with

(0.05, 0.05)-guarantee. However, if we set ζ = 0.6, we can prove P (f̃φ−λ > ζ) =
0.288 > ε = 0.05, so by Lemma 2 we get that there exist an unsafe region such
that f(p, q) > ζ, with confidence 95%.

We can take advantage of the easy computation of linear programming with
linear functions to further search for potential counterexamples that may exist.
The maximum value of f̃φ can be found at (0.01, 0.8), according to the linearity

of f̃φ, so we can instantiate the pDTMC DV in Fig. 2 with the parameter point
(0.01, 0.8) to get that fφ(p, q) = 0.796. Since fφ(p, q) > 0.6 for the safety level
ζ = 0.6, we can claim that the real counterexample (0.01, 0.8) is found. In the
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case that the parameter point v0 = (p, q) corresponding to maximum value of f̃φ
is a spurious counterexample for the pDTMC with respect to φ, we can learn a
more precise approximation by adding v0 to X̃. One may also divide the domain
X into several subdomains and analyze each of them separately.

As for the computational complexity, it is easy to find the maximum value
of a linear function by linear programming; on the other hand, computing the
maximum value of polynomials and rational functions is rather difficult if their
degree is very high or the dimension of the parameter space is too large. So a
linear function is a good alternative to compute the maximum value of f with
PAC guarantee, while polynomials are suitable for analyzing more complicated
properties, such as the global ones considered below.

Polynomial PAC Approximation. One advantage of polynomials over ra-
tional functions is that they make it easy to compute complex operations such
as inner product and integral [46], as needed to evaluate e.g. the Lp norm

∥g∥p = p

√∫
Z
|g(z)|p dz of a function g : Z → R, with p ≥ 1. This means that

we can adopt polynomials to check some more complicated properties of a
pDTMRM RV, such as whether the function fφ is close to a given number β on
the whole parameter space X. This is useful, for instance, to evaluate how much
the behavior of RV with respect to the property φ is affected by the variations
of the parameters. We can model this situation as follows:

Definition 8. Given the domain X of a set of parameters, a function f : X →
R≥0, a safety level ζ, and β ∈ R≥0, we say that f is near β within the safety
level ζ on X with respect to the Lp norm, if ∥f − β∥p < ζ.

To verify the above property, we can rely on the following result:

Lemma 3. Given X, f , ζ, and β as in Def. 8, let M be an upper bound of
f(X) and f̃ be a PAC approximation of f with (ε, η)-guarantee and margin λ;
let |X| =

∫
X

1 dv. For each p ≥ 1, if f̃ satisfies the condition

p

√(
λ p
√

(1 − ε) · |X| + ∥f̃ − β∥p
)p

+ ε · |X| · max(|M − β|p, βp) < ζ (6)

then ∥f − β∥p < ζ holds with confidence 1 − η.

Consider again the pDTMC DV shown in Fig. 2 and φ = P=?(F�); since fφ
represents probabilities, we have the well-known upper bound M = 1. Here we
consider the L2 norm, which is widely used in describing the error between func-
tions in the signal processing field (see, e.g., [10,19]), as it can reflect the global
approximation properties and is easy to compute. To simplify the notation, let
UB denote the complex expression occurring in the formula (6), that is:

UB(f̃φ, X, β) =

√(
λ
√

(1 − ε) · |X| + ∥f̃φ − β∥2
)2

+ ε · |X| · max(|1 − β|2, β2).
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We want to know whether fφ(p, q) = q2

q+2p−2pq is near 0.5 within 0.05, i.e., given

the safety level ζ = 0.05, we want to check ∥fφ − 0.5∥2 < 0.05. According to

Lemma 3, we first compute a PAC approximation f̃φ of fφ. By setting ε = η =

0.05, we get the quadratic polynomial f̃φ(p, q) = 0.013 + 0.925 ∗ q − 1.442 ∗ p+
0.953∗pq+2.072∗p2 +0.085∗q2, by rounding to three decimals. In this case, we
get UB(f̃φ, X, β) = 0.0432 < ζ = 0.05, so Lemma 3 applies. If, instead, we would
have chosen ζ ′ = 0.04, then we cannot prove ∥fφ − 0.5∥2 < 0.04 by relying on
Lemma 3. To do so, we need to consider the more conservative values ε = 0.01
and η = 0.001, which give us UB(f̃φ, X, β) = 0.0379 < ζ ′ = 0.04, so we can
derive that ∥fφ − 0.5∥2 < 0.04 holds with confidence 99.9%.

Extension to Reward Models. The extension of the constructions given
above to reward properties is rather easy: for instance, we can approximate
the rational function representing the state property φ = R=?(Fφ

′), the reward
counterpart of P=?(ψ

′), by instantiating fφ(vi) in Problem (4) with the expected
reward value computed on the pDTMC instantiated with vi. Similarly, we can
compute linear and polynomial PAC approximations for safe regions, with the
latter defined in terms of the value of the reward instead of the probability.

We can consider also the following case: given a pDTMRM RV, we want
to verify whether the expected value of φ = R=?(Fφ

′) over the parameters v,
denoted fφ(v), can reach a given reward level ρ. This model the scenarios where,
to make a decision, we need to know whether the expectation of the rewards for
a certain decision satisfies the given conditions. We formalize this case as follows:

Definition 9. Given the domain X of a set of parameters, a function f : X →
R≥0, a reward level ρ, and a probability measure P over X, we say that the
expectation of f on X with respect to P can reach the reward level ρ, if

∫

X

f(v) dP (v) > ρ. (7)

We can resort to the following lemma to check condition (7):

Lemma 4. Given X, f , P , and ρ as in Def. 9, let f̃ be a PAC approximation
of f with (ε, η)-guarantee and margin λ. If f̃ satisfies the condition

∫

X

(f̃(v) − λ) dP (v) − ε · |X| · max
v∈X

(f̃(v) − λ) > ρ, (8)

then Condition (7) holds with confidence 1 − η.

4 Experimental Evaluation

We have implemented the PAC-based analysis approach proposed in Sect. 3 in a
prototype tool Tool and evaluated it on several benchmarks: we considered the
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Table 1. Overview of the outcomes of the experiments

Outcome PRISM Storm
Tool1 Tool2 Tool3 Tool4 Tool5

Toold parallelism: 1 thread/8 threads
P
=
?
[ψ
] Success 522 576 594/629 585/621 576/621 576/621 576/603

Memoryout 18 63 0/306 0/306 0/306 0/306 0/306
Timeout 396 297 342/1 351/9 360/9 360/9 360/27

R
=
?
[ψ
] Success 153 224 302/302 302/302 302/302 302/302 302/302

Memoryout 0 0 0/282 0/282 0/282 0/282 0/282
Timeout 467 396 318/36 318/36 318/36 318/36 318/36

DTMCs from the PRISM benchmark suite [39], and replaced the probabilistic
choices in them with parameters. The probabilistic choices in most of the mod-
els correspond to the flip of a fair coin, so we considered three possibles ranges
for the parameters, namely [0.01, 0.33], [0.33, 0.66], and [0.66, 0.99], to represent
the fact that the coin is strongly unfair to head, rather fair, and strongly unfair
to tail, respectively. For the remaining models, where the choice is managed by
the uniform distribution over several outcomes, we split the outcomes into two
groups (e.g., odd and even outcomes) and then used a parametric coin and five
intervals to choose the group. By considering the reachability properties avail-
able for each DTMC and the choice of the constants controlling the size of the
DTMCs, we get a total of 936 benchmarks for our evaluation for probabilistic
properties and 620 benchmarks for expected rewards. We performed our experi-
ments on a desktop machine with an i7-4790 CPU and 16 GB of memory running
Ubuntu Server 20.04.4; we used BenchExec [7] to trace and constrain the tools’
executions: we allowed each benchmark to use 15 GB of memory and imposed a
time limit of 10 minutes of wall-clock time.

Tool is written in JAVA and uses Storm [32] and MATLAB to get the
value of the analyzed property and the solution of the LP problem, respectively.
We also used Storm v1.7.0 and PRISM [38] v4.7 to compute the actual rational
functions for the benchmarks, to check how well our PAC approximation works in
practice. We were unable to compare with the fraction-free approach proposed
in [5] since it is implemented as an extension of Storm v1.2.1 that fails to
build on our system. To avoid to call repeatedly Storm for each sample as
an external process, we wrote a C wrapper for Storm that parses the input
model and formula and sets the model constants only once, and then repeatedly
instantiates the obtained parametric model with the samples and computes the
corresponding values of the property, similarly to the batch mode used in [3]. We
also implemented a multi-threaded evaluation of the sampled points, by calling
multiple instances of the wrapper in parallel on a partition of the samples.

4.1 Overall Evaluation

In Table 1 we show the outcome of the different tools on the 936 probabilis-
tic (marked with P=?[ψ]) and 620 reward (marked with R=?[ψ]) benchmarks,
namely whether they successfully produced a rational function or whether they
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Fig. 4. Scatter plot for the margin λ for different Toold and box plots for the margin λ

failed by timeout or by running out of memory. Besides the results for PRISM
and Storm computing the actual rational function, we report two values for
each outcome of Toold, where the superscript d indicates the degree of the
polynomial used as template: in e.g. the pair 594/629, the first value 594 is rel-
ative to the single-threaded Tool1, while the value 629 is for the 8-threaded
Tool1, i.e., Tool with 8 instances of the Storm wrapper running in parallel.
As parameters for Tool, we set ε = η = 0.05; for the benchmarks with two
parameters, this results in sampling between 280 and 1000 points, for d = 1 to
d = 5, respectively. To make the comparison between the different templates
fairer, we set the same random seed for each run of Tool; this ensures that
all samples used by e.g. Tool2 are also used by Tool5. As we can see from
Table 1, Tool is able to compute polynomials with different degrees for more
benchmarks than Storm and PRISM. By inspecting the single experiments, for

the probabilistic properties we have that PRISM ⊆ Storm ⊆ Tooldn ⊆ Toold
′

n

for each d′ < d degrees and n threads, as sets of successfully solved cases; we also
have that Toold1 ⊆ Toold8 for each d. For the reward properties we have that

Tooldn = Toold
′

n′ for each combination of d, d′ ∈ {1, · · · , 5} and n, n′ ∈ {1, 8}
and that Storm,PRISM ⊆ Tooldn; however Storm and PRISM are incom-
parable, with cases solved by Storm but not by PRISM, and vice-versa. In the
next section we will evaluate how the margin λ changes depending on the degree
d and the statistical parameters ε and η through the induced number of samples.

4.2 Relation of the Polynomial Degree d and the Number of
Samples with the Margin λ and the Distance ∥fφ − f̃φ∥2

In Fig. 4 we present plots for Tool using polynomial templates with different
degrees and how the computed λ changes. As we can see from the plots, by
using a higher degree we get a lower value for the margin λ, as one would expect
given that polynomials with higher degree can approximate better the shape of
the actual rational function: from the box plots on the right side of the figure,
we can see that using higher degree polynomials allows us to get values for λ
that are much closer to 0. Note that in these box plots we removed the lower
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whiskers since they are 0 for all degrees, and we use a logarithmic y-axis. The
scatter plot shown on the left side of Fig. 4, where we compare the values of λ
produced by Tool1 with those by Toold, for d = 2, 3, 4, 5, confirms that the
higher the degree is, the closer to 0 the corresponding mark is, since the points
for the same benchmark share the same x-axis value.

In Fig. 5 we show the value of ∥fφ − f̃φ∥2, that is, how close the polynomial

f̃φ is to the actual rational function fφ, for different degrees of the polynomial
and the number of samples, as well as the corresponding values of the computed
λ. The plots are relative to one benchmark such that the corresponding rational
function (a polynomial having degree 96) computed by Storm can be managed
by MATLAB without incurring in obvious numerical errors, while having the
margin λ computed by Tool2 reasonably large (λ ≈ 0.063).

From the plots we can see that we need at least 100 samples to get a rather
stable value for ∥fφ − f̃φ∥2, so that the value of ∥fφ − f̃φ∥2 is smaller for higher
degrees, which reflects the more accurate polynomial approximation to the origi-
nal function, in line with the plots in Fig. 4. However, for the same degree, as the
number of samples increases, the value of ∥fφ − f̃φ∥2 does not always decrease.
This happens because with few points, the polynomial can fit them well, as indi-
cated by the low value of λ; however, such few points are likely to be not enough
to represent accurately the shape of fφ. By increasing the number of samples,
the shape of fφ can be known better, in particular where it changes more; this
makes it more difficult for the polynomials to approximate fφ, as indicated by

the larger λ; on the other hand, they get closer to fφ, so ∥fφ − f̃φ∥2 stabilizes.

4.3 Relation of the Statistical Parameters ε and η with the
Distances ∥fφ − β∥2 and UB(f̃φ, X, β)

We now consider the behavior of fφ and whether it remains close to some num-
ber β within ζ, that is, we want to check whether ∥fφ − β∥2 < ζ holds. Here
we set the safety level ζ to be 0.1 and consider different β’s values for differ-
ent functions fφ. We consider 20 rational functions computed by Storm that
MATLAB can work without incurring in obvious numerical errors, such as those
outside the probability interval [0, 1]. For each of the function, we computed the
corresponding value of β by sampling 20 points for the parameters and taking

16



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

0.05

0.1

Function identifier

V
al

u
e

∥fφ − β∥2
ε = 0.1
ε = 0.05
ε = 0.005
ε = 0.001

ζ

Fig. 6. Comparison of ∥fφ − β∥2 with UB(f̃φ, X, β) for η = 0.05 and different ε

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

10−3

10−2

10−1

100

Function identifier

V
al

u
e

∥fφ − f tφ∥2 at (0, 0)

∥fφ − f tφ∥2 at center

∥fφ − f̃φ∥2

Fig. 7. Distance from fφ of the Taylor expansion vs. the approximating polynomial

the average value, rounded to the first decimal, of the function on them. We rely
on Lemma 3 to perform the analysis; the results are shown in Fig. 6.

In the figure, we plot the actual value of ∥fφ − β∥2, the boundary ζ, and the

value of UB(f̃φ, X, β) computed with respect to η = 0.05 and different choices
of ε for the 20 functions. As we can see, the smaller ε, the higher the number
of cases on which Lemma 3 ensures ∥fφ − β∥2 < ζ; this is expected, since a

smaller ε increases the number of samples, so the approximating polynomial f̃φ
gets closer to the real shape of fφ. Moreover, when ∥fφ − β∥2 is already close

to ζ, there is little space for f̃φ to differ from fφ, as happens for the e.g. the
function 1. Thus it is more difficult for us to be able to rely on Lemma 3 to check
whether ∥fφ − β∥2 < ζ holds, even if this actually the case.

4.4 Comparison with the Taylor Expansion

We compare the accuracy of PAC approximation against that of the Taylor ex-
pansion on the same cases used for Fig. 6; the comparison is shown in Fig. 7.
For the comparison with fφ, we consider the degree 2 for both the Taylor ex-

pansion f tφ and the approximating polynomial f̃φ computed with ε = η = 0.05.
For the Taylor expansion f tφ, we considered two versions: the expansion at the
origin, i.e., (0, 0) for two parameters (marked as “∥fφ−f tφ∥2 at (0, 0)” in Fig. 7),
that is commonly used since it is cheaper to compute than the expansions at
other points; and the expansion at the barycenter of the space of the parameters
(marked as “∥fφ − f tφ∥2 at center” in Fig. 7).

As we can see from the plot, that uses a logarithmic scale on the y-axis, the
distance ∥fφ − f̃φ∥2 is between one and three orders of magnitude smaller than
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∥fφ − f tφ∥2 at the origin. If we consider ∥fφ − f tφ∥2 at the barycenter, we get

values much closer to ∥fφ − f̃φ∥2, but still larger up to one order of magnitude.
One of the reasons for this is that the Taylor expansion reflects local properties
of fφ at the expansion point, while the PAC approximation provides a global
approximation of fφ, thus reducing the overall distance. Compared with the
Taylor expansion, the PAC approximation has also other advantages: the PAC
approximation can handle both white-box and black-box problems, i.e., we do
not need to get the analytical form of fφ; this means that we can treat it as a
black box and get a good approximation of it while the Taylor expansion can
only be applied after computing the actual function fφ. Moreover, the PAC
approximation is able to generate polynomials with any given error rate and
provide probabilistic guarantee, while Taylor expansion cannot.

4.5 Extension to Reward Models

In Fig. 8 we show how Eq. (8) applies to
∫
X
fφ(v) dP (v) for a selection of

30 reward properties fφ computed by Storm; as usual, we compute f̃φ with
ε = η = 0.05. In the figure, we report the actual value of

∫
X
fφ(v) dP (v) as

well as that of the expression in Eq. (8) computed for the polynomial PAC
approximations f̃φ at different degrees. As we can see from Fig. 8, the higher

the degree of f̃φ, the more accurate the estimation of the
∫
X
fφ(v) dP (v)’s lower

bound is. In particular, the quadratic f̃φ provides a very close lower bound for∫
X
fφ(v) dP (v); this is remarkable, since evaluating max(f̃(v) − λ) in Eq. (8)

is often an NP-hard non-convex optimization problem [44, 47] and, for cubic or
higher polynomials, it requires specialized theories and tools to solve [40,41,51].

5 Conclusion

In this paper, we presented a PAC-based approximation framework for studying
several properties of parametric discrete time Markov chains. Within the frame-
work, we can analyze the safety regions of the domain of the parameters, check
whether the actual probability fluctuates around a reference value within a cer-
tain bound, and get a polynomial approximating the actual probability rational
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function with given (ε, η)-PAC guarantee. An extended experimental evaluation
confirmed the efficacy of our framework in analyzing parametric models.

As future work, we plan to investigate the applicability of the scenario ap-
proach to other Markov models and properties, such as continuous time Markov
chains and Markov decision processes with and without rewards, where param-
eters can also control the rewards structures. Moreover, we plan to explore the
combination of the scenario approach with statistical model checking and black-
box verification and model learning.
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7. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: requirements and solu-

tions. Int. J. Softw. Tools Technol. Transf. 21(1), 1–29 (2019)
8. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic

systems. In: FSTTCS. Lecture Notes in Computer Science, vol. 1026, pp. 499–513.
Springer (1995)

9. Blackwell, D.: On the functional equation of dynamic programming. J. Math. Anal.
Appl. 2(2), 273–276 (1961)

19

https://doi.org/10.5281/zenodo.8181117


10. Boggess, A., Narcowich, F.J.: A first course in wavelets with Fourier analysis. John
Wiley & Sons (2015)

11. Bortolussi, L., Milios, D., Sanguinetti, G.: Smoothed model checking for uncertain
continuous-time Markov chains. Inf. Comput. 247, 235–253 (2016)

12. Bortolussi, L., Silvetti, S.: Bayesian statistical parameter synthesis for linear tem-
poral properties of stochastic models. In: TACAS (2). Lecture Notes in Computer
Science, vol. 10806, pp. 396–413. Springer (2018)

13. Calafiore, G.C., Campi, M.C.: Uncertain convex programs: randomized solutions
and confidence levels. Math. Program. 102(1), 25–46 (2005)

14. Calafiore, G.C., Campi, M.C.: The scenario approach to robust control design.
IEEE Trans. Autom. Control. 51(5), 742–753 (2006)

15. Campi, M.C., Garatti, S.: A sampling-and-discarding approach to chance-
constrained optimization: Feasibility and optimality. J. Optim. Theory Appl.
148(2), 257–280 (2011)

16. Campi, M.C., Garatti, S., Prandini, M.: The scenario approach for systems and
control design. Annu. Rev. Control. 33(2), 149–157 (2009)
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A Proofs of the Lemmas

Lemma 2. Given the domain of parameters X, a function f : X → R≥0, and

a probability measure P over X, let f̃ be a PAC approximation of f with (ε, η)-
guarantee. Given the safety level ζ ∈ R≥0, if for each v ∈ X we have f̃(v)+λ < ζ,

then P (f(v) < ζ) ≥ 1 − ε holds with confidence 1 − η. In turn, if P (f̃(v) − λ >
ζ) > ε, then there exist v ∈ X such that f(v) > ζ holds with confidence 1 − η.

Proof. On the one hand, if the condition f̃(v) + λ < ζ holds for each v ∈ X,
then we have

P (f(v) < ζ) ≥ P (f(v) < f̃(v) + λ)

≥ P (f(v) − f̃(v) < λ)

≥ P (|f(v) − f̃(v)| < λ).

By the definition of PAC approximation, it follows that

P (f(v) < ζ) ≥ 1 − ε

so the parameters space X is safe with the confidence of 1 − η.

On the other hand, we first assume that for each v ∈ X, the condition
f(v) < ζ holds. Since f̃ is a PAC approximation of f with (ε, η)-guarantee, this
implies that

P (|f̃(v) − f(v)| ≤ λ) ≥ 1 − ε

according to Def. 5. Moreover, we have

P (f(v) − λ ≤ f̃(v) ≤ f(v) + λ) ≥ 1 − ε.

Therefore,

P (f̃(v) ≤ f(v) + λ) ≥ 1 − ε

holds. Since f(v) < ζ, this implies that

P (f̃(v) ≤ ζ + λ) ≥ 1 − ε,

which is equivalent to the following inequality:

P (f̃(v) > ζ + λ) < ε.

This contradicts the assumption “P (f̃(v) − λ > ζ) > ε” in the statement of the
lemma, thus the condition we assumed “∀v ∈ X, the condition f(v) < ζ holds”
cannot be true. From this we derive that there exists a point v ∈ X such that
f(v) > ζ with confidence 1 − η, i.e., the domain of parameters X is unsafe, as
desired.
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Lemma 3. Given X, f , ζ, and β as in Def. 8, let M be an upper bound of
f(X) and f̃ be a PAC approximation of f with (ε, η)-guarantee and margin λ;
let |X| =

∫
X

1 dv. For each p ≥ 1, if f̃ satisfies the condition

p

√(
λ p
√

(1 − ε) · |X| + ∥f̃ − β∥p
)p

+ ε · |X| · max(|M − β|p, βp) < ζ (6)

then ∥f − β∥p < ζ holds with confidence 1 − η.

Proof. In the following sequence of (in)equalities, we motivate between them
how to obtain the next term in the sequence.

∥f − β∥p

By definition of the Lp norm

= p

√∫

X

|f(v) − β|p dv

By splitting the integral region into two parts

= p

√∫

X1

|f(v) − β|p dv +

∫

X2

|f(v) − β|p dv

Where X = X1 ⊎X2 and X1 is such that P (X1) ≥ 1 − ε and for each v ∈ X1,
we have |f(v)− f̃(v)| ≤ λ. Then by known triangular inequality of the Lp norm

≤ p

√√√√
(

p

√∫

X1

|f(v) − f̃(v)|p dv + p

√∫

X1

|f̃(v) − β|p dv
)p

+

∫

X2

|f(v) − β|p dv

From the condition P (|f(v) − f̃(v)| ≤ λ) ≥ 1 − ε

≤ p

√√√√
(

p
√

(1 − ε)|X|λp + p

√∫

X

|f̃(v) − β|p dv
)p

+

∫

X2

|f(v) − β|p dv

≤ p

√(
λ p
√

(1 − ε) · |X| + ∥f̃ − β∥p
)p

+ ε · |X| · max(|M − β|p, βp).

Since by the lemma assumption we have that

p

√(
λ p
√

(1 − ε) · |X| + ∥f̃ − β∥p
)p

+ ε · |X| · max(|M − β|p, βp) < ζ

holds, it follows that the property ∥f−β∥p < ζ is satisfied as well, with confidence
1 − η.
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Lemma 4. Given X, f , P , and ρ as in Def. 9, let f̃ be a PAC approximation
of f with (ε, η)-guarantee and margin λ. If f̃ satisfies the condition

∫

X

(f̃(v) − λ) dP (v) − ε · |X| · max
v∈X

(f̃(v) − λ) > ρ, (8)

then Condition (7) holds with confidence 1 − η.

Proof. By splitting the integral region X into two parts X = X1 ⊎X2 where X1

is such that P (X1) ≥ 1 − ε and for each v ∈ X1 we have |f(v) − f̃(v)| ≤ λ, as
in the proof of Lemma 3, we have

∫

X

f(v) dP (v) =

∫

X1

f(v) dP (v) +

∫

X2

f(v) dP (v).

Since we have f(v) ≥ 0 for each v ∈ X by definition of f , it follows that∫
X2
f(v) dP (v) ≥ 0. This implies that

∫

X

f(v) dP (v) ≥
∫

X1

f(v) dP (v)

≥
∫

X1

(f̃(v) − λ) dP (v)

=

∫

X

( ˜f(v) − λ) dP (v) −
∫

X2

(f̃(v) − λ) dP (v)

≥
∫

X

(f̃(v) − λ) dP (v) − ε · |X| · max
v∈X2

(f̃(v) − λ)

≥
∫

X

(f̃(v) − λ) dP (v) − ε · |X| · max
v∈X

(f̃(v) − λ).

This means that if the approximation polynomial f̃ satisfies

∫

X

(f̃(v) − λ) dP (v) − ε · |X| · max
v∈X

(f̃(v) − λ) ≥ ρ,

then
∫

X

f(v) dP (v) ≥
∫

X

(f̃(v) − λ) dP (v) − ε · |X| · max
v∈X

(f̃(v) − λ) ≥ ρ

holds with confidence 1 − η, as required.
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