Skip to main content

ppLTLTT : Temporal Testing for Pure-Past Linear Temporal Logic Formulae

  • Conference paper
  • First Online:
Automated Technology for Verification and Analysis (ATVA 2023)

Abstract

This paper presents ppLTLTT, a tool for translating pure-past linear temporal logic formulae into temporal testers in the form of automata. We show how ppLTLTT can be used to easily extend existing LTL-based tools, such as LTL-to-automata translators and reactive synthesis tools, to support a richer input language. Namely, with ppLTLTT, tools that accept LTL input are also made to handle pure-past LTL as atomic formulae. While the addition of past operators does not increase the expressive power of LTL, it opens up the possibility of writing more intuitive and succinct specifications. We illustrate this intended use of ppLTLTT for Slugs, Strix, and Spot ’s command line tool LTL2TGBA by describing three corresponding wrapper tools pSlugs, pStrix, and pLTL2TGBA, that all leverage ppLTLTT. All three wrapper tools are designed to seamlessly fit this paradigm, by staying as close to the respective syntax of each underlying tool as possible.

This research is supported by the Swedish research council (VR) project (No. 2020-04963) and the ERC Consolidator grant DSynMA (No. 772459).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/DoppeD/ppLTLTT.

  2. 2.

    Note that Haskell Integers are of arbitrary precision; the input formula’s size is only limited by the computer’s memory.

  3. 3.

    The auxiliary tools described in Sect. 4 default to a binary encoding, but users can opt for a one-hot encoding instead.

References

  1. Lamaconv-logics and automata converter library. https://www.isp.uni-luebeck.de/lamaconv. Institute for Software Engineering and Programming Languages, University of Lübeck. Accessed 14 Oct 2022

  2. Slugs. https://github.com/VerifiableRobotics/slugs. Verifiable Robotics Research Group, Cornell University. Accessed 14 Oct 2022

  3. Babiak, T., et al.: The Hanoi Omega-automata format. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 479–486. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_31

    Chapter  Google Scholar 

  4. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Duret-Lutz, A.: LTL translation improvements in Spot 1.0. Int. J. Crit. Comput. Based Syst. 5(1/2), 31–54 (2014)

    Google Scholar 

  6. Duret-Lutz, A., et al.: From spot 2.0 to spot 2.10: what’s new? In: Shoham, S., Vizel, Y. (eds.) CAV 2022. LNCS, vol. 13372, pp. 174–187. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-13188-2_9

    Chapter  Google Scholar 

  7. Ehlers, R., Raman, V.: Slugs: extensible GR(1) synthesis. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 333–339. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6_18

    Chapter  Google Scholar 

  8. Fifarek, A.W., Wagner, L.G., Hoffman, J.A., Rodes, B.D., Aiello, M.A., Davis, J.A.: SpeAR v2.0: formalized past LTL specification and analysis of requirements. In: Barrett, C., Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 420–426. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57288-8_30

    Chapter  Google Scholar 

  9. Grekula, O.: SeqLTL and \(\omega \)LTL – tight witnesses for composing LTL formulas. Master’s thesis, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden (2023)

    Google Scholar 

  10. Katis, A., Mavridou, A., Giannakopoulou, D., Pressburger, T., Schumann, J.: Capture, analyze, diagnose: Realizability checking of requirements in fret. In: Shoham, S., Vizel, Y. (eds.) CAV 2022. LNCS, vol. 13372, pp. 490–504. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-13188-2_24

    Chapter  Google Scholar 

  11. Klein, U., Pnueli, A.: Revisiting synthesis of GR(1) specifications. In: Barner, S., Harris, I., Kroening, D., Raz, O. (eds.) HVC 2010. LNCS, vol. 6504, pp. 161–181. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19583-9_16

    Chapter  Google Scholar 

  12. Luttenberger, M., Meyer, P.J., Sickert, S.: Practical synthesis of reactive systems from LTL specifications via parity games. Acta Informatica 57(1–2), 3–36 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Markey, N.: Temporal logic with past is exponentially more succinct. Bull. Eur. Assoc. Theor. Comput. Sci. 79, 122–128 (2003)

    MathSciNet  MATH  Google Scholar 

  14. Meyer, P.J., Sickert, S., Luttenberger, M.: Strix: explicit reactive synthesis strikes back! In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 578–586. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3_31

    Chapter  Google Scholar 

  15. Piterman, N., Pnueli, A.: Temporal logic and fair discrete systems. In: Handbook of Model Checking, pp. 27–73. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_2

    Chapter  Google Scholar 

  16. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer, Heidelberg (2005). https://doi.org/10.1007/11609773_24

    Chapter  Google Scholar 

  17. Tsai, M.-H., Tsay, Y.-K., Hwang, Y.-S.: GOAL for games, omega-automata, and logics. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 883–889. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_62

    Chapter  Google Scholar 

  18. Tsay, Y.-K., Chen, Y.-F., Tsai, M.-H., Wu, K.-N., Chan, W.-C.: GOAL: a graphical tool for manipulating Büchi automata and temporal formulae. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 466–471. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71209-1_35

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaun Azzopardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Azzopardi, S., Lidell, D., Piterman, N., Schneider, G. (2023). ppLTLTT : Temporal Testing for Pure-Past Linear Temporal Logic Formulae. In: André, É., Sun, J. (eds) Automated Technology for Verification and Analysis. ATVA 2023. Lecture Notes in Computer Science, vol 14216. Springer, Cham. https://doi.org/10.1007/978-3-031-45332-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45332-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45331-1

  • Online ISBN: 978-3-031-45332-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics