Abstract
This paper presents ppLTLTT, a tool for translating pure-past linear temporal logic formulae into temporal testers in the form of automata. We show how ppLTLTT can be used to easily extend existing LTL-based tools, such as LTL-to-automata translators and reactive synthesis tools, to support a richer input language. Namely, with ppLTLTT, tools that accept LTL input are also made to handle pure-past LTL as atomic formulae. While the addition of past operators does not increase the expressive power of LTL, it opens up the possibility of writing more intuitive and succinct specifications. We illustrate this intended use of ppLTLTT for Slugs, Strix, and Spot ’s command line tool LTL2TGBA by describing three corresponding wrapper tools pSlugs, pStrix, and pLTL2TGBA, that all leverage ppLTLTT. All three wrapper tools are designed to seamlessly fit this paradigm, by staying as close to the respective syntax of each underlying tool as possible.
This research is supported by the Swedish research council (VR) project (No. 2020-04963) and the ERC Consolidator grant DSynMA (No. 772459).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
https://github.com/DoppeD/ppLTLTT.
- 2.
Note that Haskell Integers are of arbitrary precision; the input formula’s size is only limited by the computer’s memory.
- 3.
The auxiliary tools described in Sect. 4 default to a binary encoding, but users can opt for a one-hot encoding instead.
References
Lamaconv-logics and automata converter library. https://www.isp.uni-luebeck.de/lamaconv. Institute for Software Engineering and Programming Languages, University of Lübeck. Accessed 14 Oct 2022
Slugs. https://github.com/VerifiableRobotics/slugs. Verifiable Robotics Research Group, Cornell University. Accessed 14 Oct 2022
Babiak, T., et al.: The Hanoi Omega-automata format. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 479–486. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_31
Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012)
Duret-Lutz, A.: LTL translation improvements in Spot 1.0. Int. J. Crit. Comput. Based Syst. 5(1/2), 31–54 (2014)
Duret-Lutz, A., et al.: From spot 2.0 to spot 2.10: what’s new? In: Shoham, S., Vizel, Y. (eds.) CAV 2022. LNCS, vol. 13372, pp. 174–187. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-13188-2_9
Ehlers, R., Raman, V.: Slugs: extensible GR(1) synthesis. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 333–339. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6_18
Fifarek, A.W., Wagner, L.G., Hoffman, J.A., Rodes, B.D., Aiello, M.A., Davis, J.A.: SpeAR v2.0: formalized past LTL specification and analysis of requirements. In: Barrett, C., Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 420–426. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57288-8_30
Grekula, O.: SeqLTL and \(\omega \)LTL – tight witnesses for composing LTL formulas. Master’s thesis, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden (2023)
Katis, A., Mavridou, A., Giannakopoulou, D., Pressburger, T., Schumann, J.: Capture, analyze, diagnose: Realizability checking of requirements in fret. In: Shoham, S., Vizel, Y. (eds.) CAV 2022. LNCS, vol. 13372, pp. 490–504. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-13188-2_24
Klein, U., Pnueli, A.: Revisiting synthesis of GR(1) specifications. In: Barner, S., Harris, I., Kroening, D., Raz, O. (eds.) HVC 2010. LNCS, vol. 6504, pp. 161–181. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19583-9_16
Luttenberger, M., Meyer, P.J., Sickert, S.: Practical synthesis of reactive systems from LTL specifications via parity games. Acta Informatica 57(1–2), 3–36 (2020)
Markey, N.: Temporal logic with past is exponentially more succinct. Bull. Eur. Assoc. Theor. Comput. Sci. 79, 122–128 (2003)
Meyer, P.J., Sickert, S., Luttenberger, M.: Strix: explicit reactive synthesis strikes back! In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 578–586. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3_31
Piterman, N., Pnueli, A.: Temporal logic and fair discrete systems. In: Handbook of Model Checking, pp. 27–73. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_2
Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer, Heidelberg (2005). https://doi.org/10.1007/11609773_24
Tsai, M.-H., Tsay, Y.-K., Hwang, Y.-S.: GOAL for games, omega-automata, and logics. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 883–889. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_62
Tsay, Y.-K., Chen, Y.-F., Tsai, M.-H., Wu, K.-N., Chan, W.-C.: GOAL: a graphical tool for manipulating Büchi automata and temporal formulae. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 466–471. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71209-1_35
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Azzopardi, S., Lidell, D., Piterman, N., Schneider, G. (2023). ppLTLTT : Temporal Testing for Pure-Past Linear Temporal Logic Formulae. In: André, É., Sun, J. (eds) Automated Technology for Verification and Analysis. ATVA 2023. Lecture Notes in Computer Science, vol 14216. Springer, Cham. https://doi.org/10.1007/978-3-031-45332-8_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-45332-8_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-45331-1
Online ISBN: 978-3-031-45332-8
eBook Packages: Computer ScienceComputer Science (R0)