Abstract
Life in society requires constant communication and coordination. These abilities are efficiently achieved through sophisticated cognitive processes in which individuals are able to reason about the mental attitudes and actions of others. This ability is known as Theory of Mind. Inspired by human intelligence, the field of Artificial Intelligence aims to reproduce these sophisticated cognitive processes in intelligent software agents. In the field of multi-agent systems, intelligent agents are defined not only to execute reasoning cycles inspired by human reasoning but also to work similarly to human society, including aspects of communication, coordination, and organisation. Consequently, it is essential to explore the use of these sophisticated cognitive processes, such as Theory of Mind, in intelligent agents and multi-agent systems. In this paper, we conducted a literature review on how Theory of Mind has been applied to multi-agent systems, and summarise the contributions in this field.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
References
Akata, Z., et al.: A research agenda for hybrid intelligence: augmenting human intellect with collaborative, adaptive, responsible, and explainable artificial intelligence. Computer 53(08), 18–28 (2020)
Albrecht, S.V., Crandall, J.W., Ramamoorthy, S.: Belief and truth in hypothesised behaviours. Artif. Intell. 235, 63–94 (2016)
Aylett, R., et al.: Werewolves, cheats, and cultural sensitivity. In: International Conference on Autonomous Agents and Multi-agent Systems (2014)
Bara, C.P., CH-Wang, S., Chai, J.: MindCraft: theory of mind modeling for situated dialogue in collaborative tasks. arXiv preprint arXiv:2109.06275 (2021)
Bard, N., et al.: The Hanabi challenge: a new frontier for AI research. Artif. Intell. 280, 103216 (2020)
Baron-Cohen, S.: Mindblindness: An Essay on Autism and Theory of Mind. MIT Press (1997)
Baron-Cohen, S., Leslie, A.M., Frith, U.: Does the autistic child have a “theory of mind?’’. Cognition 21(1), 37–46 (1985)
Berthiaume, V.G., Shultz, T.R., Onishi, K.H.: A constructivist connectionist model of transitions on false-belief tasks. Cognition 126(3), 441–458 (2013)
Boella, G., Van der Torre, L., et al.: From the theory of mind to the construction of social reality. In: Proceedings of the Annual Conference on the Cognitive Science Society, vol. 5, pp. 298–303 (2005)
Bratman, M.: Intention, Plans, and Practical Reason. Harvard University Press, Cambridge (1987)
Bringsjord, S., et al.: Toward logic-based cognitively robust synthetic characters in digital environments. Front. Artif. Intell. Appl. 171, 87 (2008)
Cantucci, F., Falcone, R.: Towards trustworthiness and transparency in social human-robot interaction. In: 2020 IEEE International Conference on Human-Machine Systems (ICHMS), pp. 1–6. IEEE (2020)
Cantucci, F., Falcone, R.: Collaborative autonomy: human-robot interaction to the test of intelligent help. Electronics 11(19), 3065 (2022)
Chang, H.M., Soo, V.W.: Simulation-based story generation with a theory of mind. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 4(1), pp. 16–21 (2008)
Cooke, A., Smith, D., Booth, A.: Beyond PICO: the SPIDER tool for qualitative evidence synthesis. Qual. Health Res. 22(10), 1435–1443 (2012)
de Weerd, H., Verbrugge, R., Verheij, B.: Higher-order theory of mind in negotiations under incomplete information. In: Boella, G., Elkind, E., Savarimuthu, B.T.R., Dignum, F., Purvis, M.K. (eds.) PRIMA 2013. LNCS (LNAI), vol. 8291, pp. 101–116. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-44927-7_8
De Weerd, H., Verbrugge, R., Verheij, B.: Negotiating with other minds: the role of recursive theory of mind in negotiation with incomplete information. Auton. Agent. Multi-Agent Syst. 31, 250–287 (2017)
De Weerd, H., Verbrugge, R., Verheij, B.: Higher-order theory of mind is especially useful in unpredictable negotiations. Auton. Agent. Multi-Agent Syst. 36(2), 30 (2022)
Dissing, L., Bolander, T.: Implementing theory of mind on a robot using dynamic epistemic logic. In: IJCAI, pp. 1615–1621 (2020)
Djerroud, H., Chérif, A.A.: VICA: a vicarious cognitive architecture environment model for navigation among movable obstacles. In: ICAART, vol. 2, pp. 298–305 (2021)
Doshi, P., Qu, X., Goodie, A.S., Young, D.L.: Modeling human recursive reasoning using empirically informed interactive partially observable Markov decision processes. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 42(6), 1529–1542 (2012)
Feng, D., Carstensdottir, E., El-Nasr, M.S., Marsella, S.: Exploring improvisational approaches to social knowledge acquisition. In: 18th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2019 (2019)
Gebhard, P., Schneeberger, T., Baur, T., André, E.: MARSSI: model of appraisal, regulation, and social signal interpretation. In: International Conference on Autonomous Agents and Multi-agent Systems (2018)
Goldman, A.I.: Theory of Mind. Oxford University Press, United Kingdom (2012)
Gouidis, F., Vassiliades, A., Basina, N., Patkos, T.: Towards a formal framework for social robots with theory of mind. In: ICAART, vol. 3, pp. 689–696 (2022)
Harbers, M., van den Bosch, K., Meyer, J.J.C.: Agents with a theory of mind in virtual training. In: Multi-agent Systems for Education and Interactive Entertainment: Design, Use and Experience, pp. 172–187. IGI Global (2011)
Hoogendoorn, M., Merk, R.-J.: Action selection using theory of mind: a case study in the domain of fighter pilot training. In: Jiang, H., Ding, W., Ali, M., Wu, X. (eds.) IEA/AIE 2012. LNCS (LNAI), vol. 7345, pp. 521–533. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31087-4_54
Hoogendoorn, M., Soumokil, J.: Evaluation of virtual agents utilizing theory of mind in a real time action game. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 59–66 (2010)
Hu, Q., Lu, Y., Pan, Z., Gong, Y., Yang, Z.: Can AI artifacts influence human cognition? The effects of artificial autonomy in intelligent personal assistants. Int. J. Inf. Manage. 56, 102250 (2021)
Husemann, S., Pöppel, J., Kopp, S.: Differences and biases in mentalizing about humans and robots. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 490–497. IEEE (2022)
Kaufmann, R., Gupta, P., Taylor, J.: An active inference model of collective intelligence. Entropy 23(7), 830 (2021)
Kelley, R., Tavakkoli, A., King, C., Nicolescu, M., Nicolescu, M., Bebis, G.: Understanding human intentions via hidden Markov models in autonomous mobile robots. In: Proceedings of the 3rd ACM/IEEE International Conference on Human Robot Interaction, pp. 367–374 (2008)
Lerer, A., Hu, H., Foerster, J., Brown, N.: Improving policies via search in cooperative partially observable games. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 05, pp. 7187–7194 (2020)
Lin, B., Bouneffouf, D., Cecchi, G.: Predicting human decision making with LSTM. In: 2022 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2022)
Lorini, E.: Rethinking epistemic logic with belief bases. Artif. Intell. 282, 103233 (2020)
Lorini, E., Jimenez, B.F.R.: Decision procedures for epistemic logic exploiting belief bases. In: 18th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2019, pp. 944–952 (2019)
Malle, B.F.: The relation between language and theory of mind in development and evolution. In: The Evolution of Language Out of Pre-language, vol. 18, pp. 265–284 (2002)
Marsella, S.C., Pynadath, D.V.: Modeling influence and theory of mind. In: Virtual Social Agents, p. 199 (2005)
Narang, S., Best, A., Manocha, D.: Inferring user intent using Bayesian theory of mind in shared avatar-agent virtual environments. IEEE Trans. Vis. Comput. Graph. 25(5), 2113–2122 (2019)
Nguyen, D., Nguyen, P., Le, H., Do, K., Venkatesh, S., Tran, T.: Learning theory of mind via dynamic traits attribution. arXiv preprint arXiv:2204.09047 (2022)
Page, M.J., et al.: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372, n71 (2021)
Panisson, A.R., et al.: On the formal semantics of theory of mind in agent communication. In: Lujak, M. (ed.) AT 2018. LNCS (LNAI), vol. 11327, pp. 18–32. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17294-7_2
Pantelis, P.C., et al.: Agency and rationality: adopting the intentional stance toward evolved virtual agents. Decision 3(1), 40 (2016)
Persiani, M., Hellström, T.: Inference of the intentions of unknown agents in a theory of mind setting. In: Dignum, F., Corchado, J.M., De La Prieta, F. (eds.) PAAMS 2021. LNCS (LNAI), vol. 12946, pp. 188–200. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85739-4_16
Pöppel, J., Kahl, S., Kopp, S.: Resonating minds-emergent collaboration through hierarchical active inference. Cogn. Comput. 14(2), 581–601 (2022)
Premack, D., Woodruff, G.: Does the Chimpanzee have a theory of mind? Behav. Brain Sci. 1(4), 515–526 (1978)
Pynadath, D.V., et al.: Disaster world: decision-theoretic agents for simulating population responses to hurricanes. Comput. Math. Organ. Theor. 29(1), 84–117 (2022)
Pynadath, D.V., Marsella, S.C.: PsychSim: modeling theory of mind with decision-theoretic agents. In: IJCAI, vol. 5, pp. 1181–1186 (2005)
Pynadath, D.V., Marsella, S.C.: Socio-cultural modeling through decision-theoretic agents with theory of mind. In: Advances in Design for Cross-Cultural Activities, pp. 417–426 (2012)
Pynadath, D.V., Rosenbloom, P.S., Marsella, S.C.: Reinforcement learning for adaptive theory of mind in the sigma cognitive architecture. In: Goertzel, B., Orseau, L., Snaider, J. (eds.) AGI 2014. LNCS (LNAI), vol. 8598, pp. 143–154. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09274-4_14
Pynadath, D.V., Si, M., Marsella, S.C.: Modeling theory of mind and cognitive appraisal with decision-theoretic agents. In: Social Emotions in Nature and Artifact: Emotions in Human and Human-Computer Interaction, pp. 70–87 (2011)
Reisenzein, R., et al.: Computational modeling of emotion: toward improving the inter-and intradisciplinary exchange. IEEE Trans. Affect. Comput. 4(3), 246–266 (2013)
Rumbell, T., Barnden, J., Denham, S., Wennekers, T.: Emotions in autonomous agents: comparative analysis of mechanisms and functions. Auton. Agent. Multi-Agent Syst. 25, 1–45 (2012)
Sarkadi, Ş, Panisson, A.R., Bordini, R.H., McBurney, P., Parsons, S.: Towards an approach for modelling uncertain theory of mind in multi-agent systems. In: Lujak, M. (ed.) AT 2018. LNCS (LNAI), vol. 11327, pp. 3–17. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17294-7_1
Sarkadi, S., Panisson, A.R., Bordini, R.H., McBurney, P., Parsons, S., Chapman, M.: Modelling deception using theory of mind in multi-agent systems. AI Commun. 32(4), 287–302 (2019)
Sarthou, G., Clodic, A., Alami, R.: Ontologenius: a long-term semantic memory for robotic agents. In: 2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 1–8. IEEE (2019)
Scassellati, B.: Theory of mind for a humanoid robot. Auton. Robot. 12, 13–24 (2002)
Shum, M., Kleiman-Weiner, M., Littman, M.L., Tenenbaum, J.B.: Theory of minds: understanding behavior in groups through inverse planning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33(1), pp. 6163–6170 (2019)
Si, M., Marsella, S.C., Pynadath, D.V.: Modeling appraisal in theory of mind reasoning. Auton. Agent. Multi-Agent Syst. 20, 14–31 (2010)
Stevens, C., de Weerd, H., Cnossen, F., Taatgen, N.: A metacognitive agent for training negotiation skills. In: Proceedings of the 14th International Conference on Cognitive Modeling, ICCM 2016 (2016)
Tekülve, J., Schöner, G.: Neural dynamic concepts for intentional systems. In: CogSci, pp. 1090–1096 (2019)
Veltman, K., de Weerd, H., Verbrugge, R.: Training the use of theory of mind using artificial agents. J. Multimodal User Interfaces 13, 3–18 (2019)
Von Der Osten, F.B., Kirley, M., Miller, T.: The minds of many: Opponent modeling in a stochastic game. In: IJCAI, pp. 3845–3851 (2017)
Walton, D.: Using argumentation schemes to find motives and intentions of a rational agent. Argument Computat. 10(3), 233–275 (2019)
Wang, R.E., Wu, S.A., Evans, J.A., Tenenbaum, J.B., Parkes, D.C., Kleiman-Weiner, M.: Too many cooks: coordinating multi-agent collaboration through inverse planning. In: Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems, pp. 2032–2034 (2020)
Ware, S.G., Siler, C.: Sabre: a narrative planner supporting intention and deep theory of mind. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 17, no. 1, pp. 99–106 (2021)
Whiten, A., Byrne, R.: Natural Theories of Mind: Evolution, Development and Simulation of Everyday Mindreading. B. Blackwell Oxford, UK (1991)
Wooldridge, M.: An Introduction to Multiagent Systems. Wiley, Hoboken (2009)
Yousefi, Z., Heinke, D., Apperly, I., Siebers, P.-O.: An agent-based model for false belief tasks: belief representation systematic approach (BRSA). In: Thomson, R., Dancy, C., Hyder, A., Bisgin, H. (eds.) SBP-BRiMS 2018. LNCS, vol. 10899, pp. 111–126. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93372-6_14
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Rocha, M., da Silva, H.H., Morales, A.S., Sarkadi, S., Panisson, A.R. (2023). Applying Theory of Mind to Multi-agent Systems: A Systematic Review. In: Naldi, M.C., Bianchi, R.A.C. (eds) Intelligent Systems. BRACIS 2023. Lecture Notes in Computer Science(), vol 14195. Springer, Cham. https://doi.org/10.1007/978-3-031-45368-7_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-45368-7_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-45367-0
Online ISBN: 978-3-031-45368-7
eBook Packages: Computer ScienceComputer Science (R0)