Skip to main content

Community Detection for Multi-label Classification

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2023)

Abstract

Exploring label correlations is one of the main challenges in multi-label classification. The literature shows that prediction performances can be improved when classifiers learn these correlations. On the other hand, some works also argue that the multi-label classification methods cannot explore label correlations. The traditional multi-label local approach uses only information from individual labels, which makes it impractical to find relationships between them. In contrast, the multi-label global approach uses information from all labels simultaneously and may miss more specific relationships that are relevant. To overcome these limitations and verify if improving the prediction performances of multi-label classifiers is possible, we propose using Community Detection Methods to model label correlations and partition the label space into partitions between the local and global ones. These partitions, here named hybrid partitions, are formed of disjoint clusters of correlated labels, which are then used to build multi-label datasets and train multi-label classifiers. Since our proposal can generate several hybrid partitions, we validate all of them and choose the one that is considered the best. We compared our hybrid partitions with the local and global approaches and an approach that generates random partitions. Although our proposal improved the predictive performance of the used classifier in some datasets compared with other partitions, it also showed that, in general, independent of the approach used, the classifier still has difficulties learning several labels and predicting them correctly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://dtai.cs.kuleuven.be/clus/.

  2. 2.

    https://github.com/cissagatto/Bracis2023/.

  3. 3.

    Computes the number of instances classified in all pairs of labels.

  4. 4.

    For the sake of space and better presentation, the tables with all the performance values were not included in this paper but are available in the repository.

References

  1. Basgalupp, M., Cerri, R., Schietgat, L., Triguero, I., Vens, C.: Beyond global and local multi-target learning. Inf. Sci. 579, 508–524 (2021)

    Google Scholar 

  2. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, P10008 (2008)

    Google Scholar 

  3. Bogatinovski, J., Todorovski, L., Džeroski, S., Kocev, D.: Comprehensive comparative study of multi-label classification methods. Expert Syst. Appl. 203, 117215 (2022)

    Google Scholar 

  4. Chang, W., Yu, H., Zhong, K., Yang, Y., Dhillon, I.S.: A modular deep learning approach for extreme multi-label text classification. CoRR abs/1905.02331 (2019)

    Google Scholar 

  5. Charte, F., Rivera, A., del Jesus, M.J., Herrera, F.: On the impact of dataset complexity and sampling strategy in multilabel classifiers performance. In: Hybrid Artificial Intelligent Systems, pp. 500–511. Springer International Publishing (2016)

    Google Scholar 

  6. Choi, S., Cha, S., Tappert, C.C.: A survey of binary similarity and distance measures. J. Systemics Cybern. Inform. 8, 43–48 (2010)

    Google Scholar 

  7. Chu, Y., et al.: DTI-MLCD: predicting drug-target interactions using multi-label learning with community detection method. Briefings in Bioinform. 22, bbaa205 (2020)

    Google Scholar 

  8. Clare, A., King, R.D.: Predicting gene function in saccharomyces cerevisiae. In: Proceedings of the European Conference on Computational Biology (ECCB 2003), September 27–30, 2003, Paris, France, pp. 42–49 (2003)

    Google Scholar 

  9. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70, 066111 (2004)

    Google Scholar 

  10. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    Google Scholar 

  11. Garg, A., Enright, C.G., Madden, M.G.: On asymmetric similarity search. In: 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA) (2015)

    Google Scholar 

  12. Gatto, E.C., Ferrandin, M., Cerri, R.: Exploring label correlations for partitioning the label space in multi-label classification. In: 2021 International Joint Conference on Neural Networks (IJCNN) (2021)

    Google Scholar 

  13. Lin, S.C., Chen, C.J., Lee, T.J.: A multi-label classification with hybrid label-based meta-learning method in internet of things. IEEE Access 8, 42261–42269 (2020)

    Google Scholar 

  14. Luaces, O., Díez, J., Barranquero, et al., J.: Binary relevance efficacy for multilabel classification. Progress in Artificial Intelligence (2012)

    Google Scholar 

  15. Melo, A., Paulheim, H.: Local and global feature selection for multilabel classification with binary relevance an empirical comparison on flat and hierarchical problems (2017)

    Google Scholar 

  16. Mezo, I.: The r-bell numbers. J. Integer Sequences 14, A11 (2011)

    Google Scholar 

  17. Mittal, R., Bhatia, M.P.S.: Classification and comparative evaluation of community detection algorithms. Archives of Computational Methods in Engineering (2020)

    Google Scholar 

  18. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004)

    Google Scholar 

  19. Nguyen, T.T., Nguyen, T.T.T., Luong, A.V., Nguyen, Q.V.H., Liew, A.W.C., Stantic, B.: Multi-label classification via label correlation and first order feature dependance in a data stream. Pattern Recogn. 90, 35–51 (2019)

    Google Scholar 

  20. Pliakos, K., Vens, C., Tsoumakas, G.: Predicting drug-target interactions with multi-label classification and label partitioning. IEEE/ACM Trans. Comput. Biol. Bioinform. 18 1596–1607 (2021)

    Google Scholar 

  21. Pons, P., Latapy, M.: Computing communities in large networks using random walks (long version) (2005)

    Google Scholar 

  22. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76, 036106 (2007)

    Google Scholar 

  23. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains: a review and perspectives. J. Artif. Intell. Res. 70, 683–718 (2021)

    Google Scholar 

  24. Reichardt, J., Bornholdt, S.: Statistical mechanics of community detection. Phys. Rev. E 74, 016110 (2006)

    Google Scholar 

  25. Rivolli, A., Read, J., Soares, C., Pfahringer, B., de Leon Ferreira de Carvalho, A.C.P.: An empirical analysis of binary transformation strategies and base algorithms for multi-label learning. Machine Learning (2020)

    Google Scholar 

  26. Rivolli, A., Soares, C., Carvalho, A.C.P.d.L.F.d.: Enhancing multilabel classification for food truck recommendation. Expert Systems (2018)

    Google Scholar 

  27. Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences 105 (2008)

    Google Scholar 

  28. Rousseeuw, P.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Google Scholar 

  29. Sechidis, K., Tsoumakas, G., Vlahavas, I.: On the stratification of multi-label data. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS (LNAI), vol. 6913, pp. 145–158. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23808-6_10

    Chapter  Google Scholar 

  30. Shahapure, K.R., Nicholas, C.: Cluster quality analysis using silhouette score. In: 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA) (2020)

    Google Scholar 

  31. Silva, T.C., Zhao, L.: Machine Learning in Complex Networks. Springer Publishing Company, Incorporated (2016)

    Book  MATH  Google Scholar 

  32. Szymański, P., Kajdanowicz, T., Kersting, K.: How is a data-driven approach better than random choice in label space division for multi-label classification? Entropy 18 (2016)

    Google Scholar 

  33. Tahir, M.A.U.H., Asghar, S., Manzoor, A., Noor, M.A.: A classification model for class imbalance dataset using genetic programming. IEEE Access 7, 71013–71037 (2019)

    Google Scholar 

  34. Vens, C., Struyf, J., Schietgat, L., Džeroski, S., Blockeel, H.: Decision trees for hierarchical multi-label classification. Mach. Learn. 73, 185–214 (2008)

    Google Scholar 

  35. Warrens, M.J.: Similarity coefficients for binary data: Properties of coefficients, coefficient matrices, multi-way metrics and multivariate coefficients. Master’s thesis, Leiden University (2008)

    Google Scholar 

  36. Zhang, M.L., Li, Y.K., Liu, X.Y., Geng, X.: Binary relevance for multi-label learning: an overview. Front. Comput. Sci. 12, 191–202 (2018)

    Google Scholar 

  37. Zhang, M.L., Zhou, Z.H.: Multi-label neural networks with applications to functional genomics and text categorization. IEEE Trans. Knowl. Data Eng. 18, 1338–1351 (2006)

    Google Scholar 

  38. Zhang, M.L., Zhou, Z.H.: Ml-knn: a lazy learning approach to multi-label learning. Pattern Recogn. 40, 2038–2048 (2007)

    Google Scholar 

  39. Zhou, J.P., Chen, L., Guo, Z.H., Hancock, J.: Iatc-nrakel: an efficient multi-label classifier for recognizing anatomical therapeutic chemical classes of drugs. Bioinformatics 36, 1391–1396 (2020)

    Google Scholar 

Download references

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. The authors also thank the Brazilian research agencies FAPESP and CNPq for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine Cecília Gatto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gatto, E.C., Valejo, A.D.B., Ferrandin, M., Cerri, R. (2023). Community Detection for Multi-label Classification. In: Naldi, M.C., Bianchi, R.A.C. (eds) Intelligent Systems. BRACIS 2023. Lecture Notes in Computer Science(), vol 14195. Springer, Cham. https://doi.org/10.1007/978-3-031-45368-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45368-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45367-0

  • Online ISBN: 978-3-031-45368-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics