Skip to main content

Wave-Shaping Neural Activation for Improved 3D Model Reconstruction from Sparse Point Clouds

  • Conference paper
  • First Online:
Advanced Concepts for Intelligent Vision Systems (ACIVS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14124))

  • 229 Accesses

Abstract

The quality of a 3D model depends on the object digitization process, which is usually characterized by a tradeoff between volume resolution and scanning speed, i.e., higher resolution scans require longer scanning times. Aiming to improve the quality of lower resolution 3D models, this paper proposes a novel approach to 3D model reconstruction from an initially coarse point cloud (PC) representation of an object. The main contribution of this paper is the introduction of a novel periodic activation function, named Wave-shaping Neural Activation (WNA), in the context of implicit neural representations (INRs). The use of the WNA function in a multilayer perceptron (MLP) can enhance the learning of continuous functions describing object surfaces given their coarse 3D representation. Then, the trained MLP can be regarded as a continuous implicit representation of the 3D representation of the object, and it can be used to reconstruct the originally coarse 3D model with higher detail. The proposed methodology is experimentally evaluated by two case studies in different application domains: a) reconstruction of complex human tissue structures for medical applications; b) reconstruction of ancient artifacts for cultural heritage applications. The experimental evaluation, which includes comparisons with state-of-the-art approaches, verifies the effectiveness and improved performance of the WNA-based INR for 3D object reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations and generative models for 3D point clouds. In: International Conference on Machine Learning. PMLR, pp. 40–49 (2018)

    Google Scholar 

  2. Bagautdinov, T., Wu, C., Saragih, J., Fua, P., Sheikh, Y.: Modeling facial geometry using compositional VAEs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 3877–3886 (2018)

    Google Scholar 

  3. Balashova, E., Wang, J., Singh, V., Georgescu, B., Teixeira, B., Kapoor, A.: 3D organ shape reconstruction from Topogram images. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 347–359. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_26

    Chapter  Google Scholar 

  4. Ballarin, M., Balletti, C., Vernier, P.: Replicas in cultural heritage: 3D printing and the museum experience. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 42, 55–62 (2018)

    Article  Google Scholar 

  5. Chabra, R., et al.: Deep local shapes: learning local SDF priors for detailed 3D reconstruction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 608–625. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_36

    Chapter  Google Scholar 

  6. Chen, X., et al.: A fast reconstruction method of the dense point-cloud model for cultural heritage artifacts based on compressed sensing and sparse auto-encoder. Opt. Quant. Electron. 51, 1–16 (2019)

    Article  Google Scholar 

  7. Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 5939–5948 (2019)

    Google Scholar 

  8. Chibane, J., et al.: Neural unsigned distance fields for implicit function learning. In: Advances in Neural Information Processing Systems, vol. 33, pp. 21638–21652 (2020)

    Google Scholar 

  9. Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26, 1045–1057 (2013)

    Article  Google Scholar 

  10. Dai, A., Ruizhongtai Qi, C., Nießner, M.: Shape completion using 3D-encoder-predictor CNNs and shape synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 5868–5877 (2017)

    Google Scholar 

  11. Deng, Z., Yao, Y., Deng, B., Zhang, J.: A robust loss for point cloud registration. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6138–6147 (2021)

    Google Scholar 

  12. Garcia Carrizosa, H., Sheehy, K., Rix, J., Seale, J., Hayhoe, S.: Designing technologies for museums: accessibility and participation issues. J. Enabl. Technol. 14, 31–39 (2020)

    Article  Google Scholar 

  13. Gómez-Rodrguez, J.J., Lamarca, J., Morlana, J., Tardós, J.D., Montiel, J.M.: SD-DefSLAM: Semi-direct monocular SLAM for deformable and intracorporeal scenes. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp 5170–5177. IEEE (2021)

    Google Scholar 

  14. Gropp, A., Yariv, L., Haim, N., Atzmon, M., Lipman, Y.: Implicit geometric regularization for learning shapes. arXiv preprint arXiv:200210099 (2020)

    Google Scholar 

  15. Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: A papier-mâché approach to learning 3D surface generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 216–224 (2018)

    Google Scholar 

  16. Hu, M., Penney, G., Edwards, P., Figl, M., Hawkes, D.J.: 3D reconstruction of internal organ surfaces for minimal invasive surgery. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007. LNCS, vol. 4791, pp. 68–77. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75757-3_9

    Chapter  Google Scholar 

  17. Huovilainen, A.: Non-linear digital implementation of the Moog ladder filter. In: Proceedings of the International Conference on Digital Audio Effects (DAFx-04), pp 61–64 (2004)

    Google Scholar 

  18. Kalozoumis, P.G., Marino, M., Carniel, E.L., Iakovidis, D.K.: Towards the development of a digital twin for endoscopic medical device testing. In: Hassanien, A.E., Darwish, A., Snasel, V. (eds.) Digital Twins for Digital Transformation: Innovation in Industry. Studies in Systems, Decision and Control, vol. 423, pp. 113–145. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-96802-1_7

  19. Kaneda, A., Nakagawa, T., Tamura, K., Noshita, K., Nakao, H.: A proposal of a new automated method for SfM/MVS 3D reconstruction through comparisons of 3D data by SfM/MVS and handheld laser scanners. PLoS ONE 17, e0270660 (2022)

    Article  Google Scholar 

  20. Kazhdan, M., Hoppe, H.: Screened Poisson surface reconstruction. ACM Trans. Graph. (ToG) 32, 1–13 (2013)

    Article  MATH  Google Scholar 

  21. Lamarca, J., Parashar, S., Bartoli, A., Montiel, J.: DefSLAM: tracking and mapping of deforming scenes from monocular sequences. IEEE Trans. Rob. 37, 291–303 (2020)

    Article  Google Scholar 

  22. Lazzarini, V., Timoney, J.: New perspectives on distortion synthesis for virtual Analog oscillators. Comput. Music. J. 34, 28–40 (2010)

    Article  Google Scholar 

  23. Levina, E., Bickel, P.: The earth mover’s distance is the mallows distance: some insights from statistics. In: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, pp 251–256. IEEE (2001)

    Google Scholar 

  24. Lewiner, T., Lopes, H., Vieira, A.W., Tavares, G.: Efficient implementation of marching cubes’ cases with topological guarantees. J. Graph. Tools 8, 1–15 (2003)

    Article  Google Scholar 

  25. Ma, B., Han, Z., Liu, Y.-S., Zwicker, M.: Neural-pull: learning signed distance functions from point clouds by learning to pull space onto surfaces. arXiv preprint arXiv:201113495 (2020)

    Google Scholar 

  26. Makantasis, K., Doulamis, A., Doulamis, N., Ioannides, M.: In the wild image retrieval and clustering for 3D cultural heritage landmarks reconstruction. Multimed. Tools Appl. 75, 3593–3629 (2016)

    Article  Google Scholar 

  27. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 4460–4470 (2019)

    Google Scholar 

  28. Osher, S., Fedkiw, R.: Signed distance functions. In: Level Set Methods and Dynamic Implicit Surfaces, pp 17–22. Springer (2003)

    Google Scholar 

  29. Pakarinen, J., Yeh, D.T.: A review of digital techniques for modeling vacuum-tube guitar amplifiers. Comput. Music. J. 33, 85–100 (2009)

    Article  Google Scholar 

  30. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 165–174 (2019)

    Google Scholar 

  31. Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., Geiger, A.: Convolutional occupancy networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 523–540. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_31

    Chapter  Google Scholar 

  32. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 652–660 (2017)

    Google Scholar 

  33. Seitz, S.M., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and evaluation of multi-view stereo reconstruction algorithms. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), pp 519–528. IEEE (2006)

    Google Scholar 

  34. Sengupta, A., Bartoli, A.: Colonoscopic 3D reconstruction by tubular non-rigid structure-from-motion. Int. J. Comput. Assist. Radiol. Surg. 16, 1237–1241 (2021)

    Article  Google Scholar 

  35. Ben-Shabat, Y., Koneputugodage, C.H., Gould, S.: DiGS: divergence guided shape implicit neural representation for unoriented point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 19323–19332 (2022)

    Google Scholar 

  36. Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit neural representations with periodic activation functions. In: Advances in Neural Information Processing Systems, vol. 33, pp. 7462–7473 (2020)

    Google Scholar 

  37. Vaz, R., Freitas, D., Coelho, A.: Blind and visually impaired visitors’ experiences in museums: increasing accessibility through assistive technologies. Int. J. Inclusive Mus. 13, 57 (2020)

    Article  Google Scholar 

  38. Wang, Z., et al.: A Deep Learning based Fast Signed Distance Map Generation. arXiv preprint arXiv:200512662 (2020)

    Google Scholar 

  39. Wilson, P.F., Stott, J., Warnett, J.M., Attridge, A., Smith, M.P., Williams, M.A.: Evaluation of touchable 3D-printed replicas in museums. Curator Mus. J. 60, 445–465 (2017)

    Google Scholar 

  40. Wu, Z., et al.: 3D shapenets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 1912–1920 (2015)

    Google Scholar 

  41. Xu, Z., Xu, C., Hu, J., Meng, Z.: Robust resistance to noise and outliers: screened Poisson surface reconstruction using adaptive kernel density estimation. Comput. Graph. 97, 19–27 (2021)

    Article  Google Scholar 

  42. Yuan, W., Khot, T., Held, D., Mertz, C., Hebert, M.: PCN: point completion network. In: 2018 International Conference on 3D Vision (3DV), pp 728–737. IEEE (2018)

    Google Scholar 

  43. Zhang, S., Zhao, L., Huang, S., Ma, R., Hu, B., Hao, Q.: 3D reconstruction of deformable colon structures based on preoperative model and deep neural network. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp 1875–1881. IEEE (2021)

    Google Scholar 

  44. Zhou, L., Sun, G., Li, Y., Li, W., Su, Z.: Point cloud denoising review: from classical to deep learning-based approaches. Graph. Models 121, 101140 (2022)

    Article  Google Scholar 

Download references

Acknowledgement

We acknowledge support of this work by the project “Smart Tourist” (MIS 5047243) which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructure”, funded by the Operational Programme "Competitiveness, Entrepreneurship and Innovation" (NSRF 2014–2020) and co-financed by Greece and the European Union (European Regional Development Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris K. Iakovidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Triantafyllou, G., Dimas, G., Kalozoumis, P.G., Iakovidis, D.K. (2023). Wave-Shaping Neural Activation for Improved 3D Model Reconstruction from Sparse Point Clouds. In: Blanc-Talon, J., Delmas, P., Philips, W., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2023. Lecture Notes in Computer Science, vol 14124. Springer, Cham. https://doi.org/10.1007/978-3-031-45382-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45382-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45381-6

  • Online ISBN: 978-3-031-45382-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics