Skip to main content

A Deep Learning Approach to Segment High-Content Images of the E. coli Bacteria

  • Conference paper
  • First Online:
Advanced Concepts for Intelligent Vision Systems (ACIVS 2023)

Abstract

High-content imaging (HCI) has been used to study antimicrobial resistance in bacteria. Although cell segmentation is critical for accurately analyzing bacterial populations, existing HCI platforms were not optimized for bacterial cells. This study proposes a convolutional neural network-based approach utilizing transfer learning and fine-tuning to perform instance segmentation on fluorescence images of E. coli. The method uses the pre-trained EfficientNet as the encoder for feature extraction and U-Net for reconstructing the segmentation maps containing the cell cytoplasm and the cell instance boundary. Next, individual cells are separated using a marker-controlled watershed transformation. The EffNetB7-UNet yields the best performance with the highest F1-Score of 0.91 compared to other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.apeer.com/annotate.

References

  1. Baheti, B., Innani, S., Gajre, S., Talbar, S.: Eff-UNet: a novel architecture for semantic segmentation in unstructured environment. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, pp. 1473–1481. IEEE (2020)

    Google Scholar 

  2. Berg, S., et al.: Ilastik: interactive machine learning for (bio) image analysis. Nat. Methods 16(12), 1226–1232 (2019)

    Article  Google Scholar 

  3. Beucher, S., Meyer, F.: Segmentation: the watershed transformation. Mathematical morphology in image processing. Opt. Eng. 34, 433–481 (1993)

    Google Scholar 

  4. Boutros, M., Heigwer, F., Laufer, C.: Microscopy-based high-content screening. Cell 163(6), 1314–1325 (2015)

    Article  Google Scholar 

  5. Caicedo, J., et al.: Data-analysis strategies for image-based cell profiling. Nat. Methods 14(9), 849–863 (2017)

    Article  Google Scholar 

  6. Caicedo, J.C., et al.: Nucleus segmentation across imaging experiments: the 2018 data science bowl. Nat. Methods 16(12), 1247–1253 (2019)

    Article  Google Scholar 

  7. Cassini, A., et al.: Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European economic area in 2015: a population-level modelling analysis. Lancet. Infect. Dis 19(1), 56–66 (2019)

    Article  Google Scholar 

  8. Chen, H., Qi, X., Yu, L., Heng, P.A.: DCAN: deep contour-aware networks for accurate gland segmentation. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, pp. 2487–2496. IEEE (2016)

    Google Scholar 

  9. Cutler, K.J., et al.: Omnipose: a high-precision morphology-independent solution for bacterial cell segmentation. Nat. Methods 19(11), 1438–1448 (2022)

    Article  Google Scholar 

  10. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops), Los Alamitos, CA, USA, pp. 248–255. IEEE Computer Society (2009)

    Google Scholar 

  11. Dillencourt, M.B., Samet, H., Tamminen, M.: A general approach to connected-component labeling for arbitrary image representations. J. ACM 39(2), 253–280 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hampton, T.: Report reveals scope of us antibiotic resistance threat. JAMA 310(16), 1661–1663 (2013)

    Article  Google Scholar 

  13. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN (2017)

    Google Scholar 

  14. Iman, M., Rasheed, K., Arabnia, H.R.: A review of deep transfer learning and recent advancements (2022)

    Google Scholar 

  15. Jeckel, H., Drescher, K.: Advances and opportunities in image analysis of bacterial cells and communities. FEMS Microbiol. Rev. 45(4), fuaa062 (2021)

    Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings, p. 80. ICLR, San Diego (2015)

    Google Scholar 

  17. Lee, G., Kim, S., Kim, J., Yun, S.Y.: Mediar: harmony of data-centric and model-centric for multi-modality microscopy (2022)

    Google Scholar 

  18. Li, M., Chen, C., Liu, X., Huang, W., Zhang, Y., Xiong, Z.: Advanced deep networks for 3D mitochondria instance segmentation (2021)

    Google Scholar 

  19. Maqsood, M., et al.: Transfer learning assisted classification and detection of Alzheimer’s disease stages using 3D MRI scans. Sensors 19, 2645 (2019)

    Article  Google Scholar 

  20. Massey, A.J.: Multiparametric cell cycle analysis using the operetta high-content imager and harmony software with phenologic. PLoS ONE 10(7), e0134306 (2015)

    Article  Google Scholar 

  21. Mermillod, M., Bugaiska, A., Bonin, P.: The stability-plasticity dilemma: investigating the continuum from catastrophic forgetting to age-limited learning effects. Front. Psychol. 4, 504 (2013)

    Article  Google Scholar 

  22. Murray, C.J., et al.: Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399(10325), 629–655 (2022)

    Article  Google Scholar 

  23. O’Neill, J.: Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. Review on Antimicrobial Resistance. Wellcome Trust and HM Government (2016)

    Google Scholar 

  24. World Health Organization, et al.: Antimicrobial resistance: global report on surveillance. World Health Organization, Geneva (2014)

    Google Scholar 

  25. World Health Organization, et al.: Ten threats to global health in 2019 (2019)

    Google Scholar 

  26. World Health Organization, et al.: Antimicrobial resistance surveillance in Europe 2022–2020 data. WHO: World Health Organization, Copenhagen (2022)

    Google Scholar 

  27. Panigrahi, S., et al.: Misic, a general deep learning-based method for the high-throughput cell segmentation of complex bacterial communities. Elife 10, e65151 (2021)

    Article  Google Scholar 

  28. Quach, D., Sakoulas, G., Nizet, V., Pogliano, J., Pogliano, K.: Bacterial cytological profiling (BCP) as a rapid and accurate antimicrobial susceptibility testing method for staphylococcus aureus. EBioMedicine 4, 95–103 (2016)

    Article  Google Scholar 

  29. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  30. Spahn, C., et al.: DeepBacs for multi-task bacterial image analysis using open-source deep learning approaches. Commun. Biol. 5(1), 688 (2022)

    Article  MathSciNet  Google Scholar 

  31. Sridhar, S., et al.: High-content imaging to phenotype antimicrobial effects on individual bacteria at scale. Msystems 6(3), e00028-21 (2021)

    Google Scholar 

  32. Stringer, C., Wang, T., Michaelos, M., Pachitariu, M.: Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18(1), 100–106 (2021)

    Article  Google Scholar 

  33. Stylianidou, S., Brennan, C., Nissen, S.B., Kuwada, N.J., Wiggins, P.A.: SuperSegger: robust image segmentation, analysis and lineage tracking of bacterial cells. Mol. Microbiol. 102(4), 690–700 (2016)

    Article  Google Scholar 

  34. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning, Long Beach, California, USA. Proceedings of Machine Learning Research, vol. 97, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  35. Tuan-Anh, T., et al.: Pathogenic Escherichia coli possess elevated growth rates under exposure to sub-inhibitory concentrations of azithromycin. Antibiotics 9(11), 735 (2020)

    Article  Google Scholar 

  36. Wang, W., et al.: Learn to segment single cells with deep distance estimator and deep cell detector. Comput. Biol. Med. 108, 133–141 (2019)

    Article  Google Scholar 

  37. Wei, D., et al.: MitoEM dataset: large-scale 3D mitochondria instance segmentation from EM images. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 66–76. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_7

    Chapter  Google Scholar 

Download references

Acknowledgment

This research is conducted under the Collaborative Research Agreement between the University of Oxford, the University of Cambridge, and the University of Science, Vietnam National University in Ho Chi Minh City, Viet Nam. We also want to acknowledge the support of the AISIA Research Lab during this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binh T. Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Duong, D.Q. et al. (2023). A Deep Learning Approach to Segment High-Content Images of the E. coli Bacteria. In: Blanc-Talon, J., Delmas, P., Philips, W., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2023. Lecture Notes in Computer Science, vol 14124. Springer, Cham. https://doi.org/10.1007/978-3-031-45382-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45382-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45381-6

  • Online ISBN: 978-3-031-45382-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics