Abstract
Segmentation of objects of interest is no longer a massive challenge with the adoption of machine learning and AI. However, feature selection and extraction are not trivial tasks in these approaches, and it is often necessary to introduce new methods for the creation of such features. Due to the lack of control over environmental conditions, for example turbidity and light scatter for underwater data, it is difficult to acquire color and texture features. However, it is still possible to obtain satisfactory shape features. This has led to the development of methods that can generate shape descriptors for use as features for data segmentation using machine learning methods such as random forest. In this work, we introduce a smoothed shape descriptor, which is the basis for a set of features used for the segmentation of underwater mussel structures with an accuracy of almost \(90\%\) based on manually labeled and measured mussel clusters by professional divers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akhtar, A., Gao, W., Li, L., Li, Z., Jia, W., Liu, S.: Video-based point cloud compression artifact removal. IEEE Trans. Multimed. 24, 2866–2876 (2021)
Ali, J., Khan, R., Ahmad, N., Maqsood, I.: Random forests and decision trees. Int. J. Comput. Sci. Issues (IJCSI) 9(5), 272 (2012)
Azhar, M., Hillman, J.R., Gee, T., Thrush, S., Delmas, P.: A low-cost stereo pipeline for semi-automated spatial mapping of mussel structures within mussel beds. Remote Sens. Environ. (Manuscript in review) (2023)
Behley, J., et al.: Semantickitti: a dataset for semantic scene understanding of lidar sequences. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9297–9307 (2019)
Chang, A.X., et al.: Shapenet: an information-rich 3d model repository. arXiv preprint arXiv:1512.03012 (2015)
Chang, Y.L., Fang, C.Y., Ding, L.F., Chen, S.Y., Chen, L.G.: Depth map generation for 2D-to-3D conversion by short-term motion assisted color segmentation. In: 2007 IEEE International Conference on Multimedia and Expo, pp. 1958–1961. IEEE (2007)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893. IEEE (2005)
Ferrari, R., et al.: 3D photogrammetry quantifies growth and external erosion of individual coral colonies and skeletons. Sci. Rep. 7(1), 1–9 (2017)
Grilli, E., Poux, F., Remondino, F.: Unsupervised object-based clustering in support of supervised point-based 3D point cloud classification. Int. Arch. Photogrammetry Remote Sens. Spat. Inf. Sci. 43, 471–478 (2021)
Li, H., Huang, D., Lemaire, P., Morvan, J.M., Chen, L.: Expression robust 3D face recognition via mesh-based histograms of multiple order surface differential quantities. In: 2011 18th IEEE International Conference on Image Processing, pp. 3053–3056 (2011). https://doi.org/10.1109/ICIP.2011.6116308
Li, X., Guskov, I.: Multiscale features for approximate alignment of point-based surfaces. In: Symposium on Geometry Processing, vol. 255, pp. 217–226 (2005)
Lu, B., Wang, Q., Li, A.: Massive point cloud space management method based on octree-like encoding. Arab. J. Sci. Eng. 44, 9397–9411 (2019)
Martin-Abadal, M., PiÃČÂśar-Molina, M., Martorell-Torres, A., Oliver-Codina, G., Gonzalez-Cid, Y.: Underwater pipe and valve 3D recognition using deep learning segmentation. J. Mar. Sci. Eng. 9(1), 5 (2020)
Monaghan, J.J.: Smoothed particle hydrodynamics. ARAA 30, 543–574 (1992). https://doi.org/10.1146/annurev.aa.30.090192.002551
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Pizarro, O., Eustice, R.M., Singh, H.: Large area 3-D reconstructions from underwater optical surveys. IEEE J. Oceanic Eng. 34(2), 150–169 (2009)
Pulido, A., Qin, R., Diaz, A., Ortega, A., Ifju, P., Shin, J.J.: Time and cost-efficient bathymetric mapping system using sparse point cloud generation and automatic object detection. In: OCEANS 2022, Hampton Roads, pp. 1–8 (2022). https://doi.org/10.1109/OCEANS47191.2022.9977073
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learning on point sets in a metric space. arXiv preprint arXiv:1706.02413 (2017)
Runyan, H., et al.: Automated 2D, 2.5 D, and 3D segmentation of coral reef pointclouds and orthoprojections. Front. Rob. AI 9 (2022)
Schroff, F., Criminisi, A., Zisserman, A.: Object class segmentation using random forests. In: BMVC, pp. 1–10 (2008)
SÃühnlein, G., Rush, S., Thompson, L.: Using manned submersibles to create 3d sonar scans of shipwrecks. In: OCEANS 2011 MTS/IEEE KONA, pp. 1–10 (2011). https://doi.org/10.23919/OCEANS.2011.6107130
Shu, C., Ding, X., Fang, C.: Histogram of the oriented gradient for face recognition. Tsinghua Sci. Technol. 16(2), 216–224 (2011). https://doi.org/10.1016/S1007-0214(11)70032-3
Snover, M.L., Commito, J.A.: The fractal geometry of mytilus edulis l. spatial distribution in a soft-bottom system. J. Exp. Mar. Biol. Ecol. 223(1), 53–64 (1998)
Stein, F., Medioni, G.: Structural indexing: efficient 2d object recognition. IEEE Trans. Pattern Anal. Mach. Intell. 14(12), 1198–1204 (1992)
Surasak, T., Takahiro, I., Cheng, C.H., Wang, C.E., Sheng, P.Y.: Histogram of oriented gradients for human detection in video. In: 2018 5th International Conference on Business and Industrial Research (ICBIR), pp. 172–176 (2018). https://doi.org/10.1109/ICBIR.2018.8391187
Tabia, H., Laga, H., Picard, D., Gosselin, P.H.: Covariance descriptors for 3D shape matching and retrieval. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 4185–4192 (2014). https://doi.org/10.1109/CVPR.2014.533
Tuzel, O., Porikli, F., Meer, P.: Region covariance: a fast descriptor for detection and classification. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 589–600. Springer, Heidelberg (2006). https://doi.org/10.1007/11744047_45
Valdez, D.A.S., et al.: CUDA implementation of a point cloud shape descriptor method for archaeological studies. In: Blanc-Talon, J., Delmas, P., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2020. LNCS, vol. 12002, pp. 457–466. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40605-9_39
Wang, G., Tie, Y., Qi, L.: Action recognition using multi-scale histograms of oriented gradients based depth motion trail Images. In: Falco, C.M., Jiang, X. (eds.) Ninth International Conference on Digital Image Processing (ICDIP 2017), vol. 10420, p. 104200I. SPIE (2017). https://doi.org/10.1117/12.2281553
Zhang, Y., et al.: Polarnet: an improved grid representation for online lidar point clouds semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9601–9610 (2020)
Zhou, W., Gao, S., Zhang, L., Lou, X.: Histogram of oriented gradients feature extraction from raw Bayer pattern images. IEEE Trans. Circ. Syst. II Express Briefs 67(5), 946–950 (2020). https://doi.org/10.1109/TCSII.2020.2980557
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Valdez, D.A.S., Azhar, M., Strozzi, A.G., Hillman, J., Thrush, S., Delmas, P. (2023). Underwater Mussel Segmentation Using Smoothed Shape Descriptors with Random Forest. In: Blanc-Talon, J., Delmas, P., Philips, W., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2023. Lecture Notes in Computer Science, vol 14124. Springer, Cham. https://doi.org/10.1007/978-3-031-45382-3_26
Download citation
DOI: https://doi.org/10.1007/978-3-031-45382-3_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-45381-6
Online ISBN: 978-3-031-45382-3
eBook Packages: Computer ScienceComputer Science (R0)