Skip to main content

Performance Analysis of Generative Adversarial Networks and Diffusion Models for Face Aging

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2023)

Abstract

Computational face aging enables predicting a person’s future appearance using algorithms, with the goal that the output age is close to the expected age and that the individual’s characteristics are maintained. In this work, we evaluate the performance of four generative models on facial aging. Two models are based on generative adversarial networks (GANs), HRFAE, and SAM, and the other two are based on diffusion models, Pix2pix-zero and Instruct-pix2pix. The first two were explicitly trained to generate an aged version of the original person, and the others have a zero-shot generation; in other words, they are generic models that perform different tasks, including facial aging. Since diffusion models have been gaining attention because of their diversity and high-quality image generation, comparing their results against models specifically designed for the task using meaningful metrics is essential. Therefore, we compared these models using the FFHQ Aging database and with the metrics: Mean absolute error (MAE) of the predicted age, Fréchet inception distance (FID), and the cosine similarity of the FaceNet’s embeddings.

V. Ivamoto—Partially supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The authors used Stable diffusion 1.4.

  2. 2.

    Ratio of diffusion steps with cross-attention weights.

References

  1. Alaluf, Y., Patashnik, O., Cohen-Or, D.: Only a matter of style: Age transformation using a style-based regression model. ACM Trans. Graph. 40(4), 1–12 (2021)

    Article  Google Scholar 

  2. Brooks, T., Holynski, A., Efros, A.A.: Instructpix2pix: learning to follow image editing instructions (2022)

    Google Scholar 

  3. Brown, T.B., et al.: Language models are few-shot learners. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. NIPS’20, Curran Associates Inc., Red Hook, NY, USA (2020)

    Google Scholar 

  4. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4685–4694 (2019)

    Google Scholar 

  5. Despois, J., Flament, F., Perrot, M.: AgingMapGAN (AMGAN): high-resolution controllable face aging with spatially-aware conditional GANs. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12537, pp. 613–628. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-67070-2_37

    Chapter  Google Scholar 

  6. Gal, R., et al.: An image is worth one word: personalizing text-to-image generation using textual inversion (2022)

    Google Scholar 

  7. Goodfellow, I., et al.: Generative adversarial nets, p. 9 (2014)

    Google Scholar 

  8. Grimmer, M., Ramachandra, R., Busch, C.: Deep face age progression: a survey. IEEE Access 9, 83376–83393 (2021)

    Article  Google Scholar 

  9. Heljakka, A., Solin, A., Kannala, J.: Recursive chaining of reversible image-to-image translators for face aging. In: Blanc-Talon, J., Helbert, D., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2018. LNCS, vol. 11182, pp. 309–320. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01449-0_26

    Chapter  Google Scholar 

  10. Hertz, A., Mokady, R., Tenenbaum, J., Aberman, K., Pritch, Y., Cohen-Or, D.: Prompt-to-prompt image editing with cross attention control (2022)

    Google Scholar 

  11. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17, pp. 6629–6640. Curran Associates Inc., Red Hook, NY, USA (2017)

    Google Scholar 

  12. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851. Curran Associates, Inc. (2020)

    Google Scholar 

  13. Ho, J., Salimans, T.: Classifier-free diffusion guidance (2022)

    Google Scholar 

  14. Huang, Y., Hu, H.: A parallel architecture of age adversarial convolutional neural network for cross-age face recognition. IEEE Trans. Circuits Syst. Video Technol. 31(1), 148–159 (2021)

    Article  Google Scholar 

  15. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  16. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. arXiv:1812.04948 [cs, stat] (2019)

  17. Kemmer, B., Simões, R., Lima, C.: Face aging using generative adversarial networks. In: Razavi-Far, R., Ruiz-Garcia, A., Palade, V., Schmidhuber, J., et al. (eds.) Generative Adversarial Learning: Architectures and Applications. Intelligent Systems Reference Library, vol. 217. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-91390-8_7

    Chapter  Google Scholar 

  18. Khanna, A., Thakur, A., Tewari, A., Bhat, A.: Cross-age face verification using face aging, pp. 94–99 (2020)

    Google Scholar 

  19. King, D.E.: Dlib-ml: a machine learning toolkit. J. Mach. Learn. Res. 10, 1755–1758 (2009)

    Google Scholar 

  20. Li, J., Li, D., Xiong, C., Hoi, S.: BLIP: bootstrapping language-image pre-training for unified vision-language understanding and generation (2022)

    Google Scholar 

  21. Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least squares generative adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2813–2821 (2017)

    Google Scholar 

  22. Nichol, A., Dhariwal, P.: Improved denoising diffusion probabilistic models (2021)

    Google Scholar 

  23. Or-El, R., Sengupta, S., Fried, O., Shechtman, E., Kemelmacher-Shlizerman, I.: Lifespan age transformation synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 739–755. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_44

    Chapter  Google Scholar 

  24. Parmar, G., Singh, K.K., Zhang, R., Li, Y., Lu, J., Zhu, J.Y.: Zero-shot image-to-image translation (2023)

    Google Scholar 

  25. Radford, A., et al.: Learning transferable visual models from natural language supervision (2021)

    Google Scholar 

  26. Richardson, E., et al.: Encoding in style: a StyleGAN encoder for image-to-image translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2287–2296 (2021)

    Google Scholar 

  27. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models (2021)

    Google Scholar 

  28. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015. Lecture Notes in Computer Science(), vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  29. Rothe, R., Timofte, R., Van Gool, L.: DEX: deep expectation of apparent age from a single image. In: 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), pp. 252–257 (2015)

    Google Scholar 

  30. Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., Aberman, K.: DreamBooth: fine tuning text-to-image diffusion models for subject-driven generation (2022)

    Google Scholar 

  31. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 815–823 (2015)

    Google Scholar 

  32. Schuhmann, C., et al.: LAION-400M: open dataset of clip-filtered 400 million image-text pairs (2021)

    Google Scholar 

  33. Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 2256–2265. PMLR, Lille, France (2015)

    Google Scholar 

  34. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. arXiv:2010.02502 (2020)

  35. Wang, Z., Tang, X., Luo, W., Gao, S.: Face aging with identity-preserved conditional generative adversarial networks, pp. 7939–7947 (2018)

    Google Scholar 

  36. Wolleb, J., Sandkühler, R., Bieder, F., Cattin, P.C.: The swiss army knife for image-to-image translation: multi-task diffusion models (2022)

    Google Scholar 

  37. Yang, H., Huang, D., Wang, Y., Jain, A.: Learning face age progression: a pyramid architecture of GANs, pp. 31–39 (2018)

    Google Scholar 

  38. Yao, X., Puy, G., Newson, A., Gousseau, Y., Hellier, P.: High resolution face age editing. CoRR abs/2005.04410 (2020)

    Google Scholar 

  39. Zhang, Z., Song, Y., Qi, H.: Age progression/regression by conditional adversarial autoencoder, vol. 2017-January, pp. 4352–4360 (2017)

    Google Scholar 

  40. Zoss, G., Chandran, P., Sifakis, E., Gross, M., Gotardo, P., Bradley, D.: Production-ready face re-aging for visual effects. ACM Trans. Graph. 41(6), 1–15 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Kemmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kemmer, B., Simões, R., Ivamoto, V., Lima, C. (2023). Performance Analysis of Generative Adversarial Networks and Diffusion Models for Face Aging. In: Naldi, M.C., Bianchi, R.A.C. (eds) Intelligent Systems. BRACIS 2023. Lecture Notes in Computer Science(), vol 14196. Springer, Cham. https://doi.org/10.1007/978-3-031-45389-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45389-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45388-5

  • Online ISBN: 978-3-031-45389-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics