Skip to main content

Time Series Forecasting of COVID-19 Cases in Brazil with GNN and Mobility Networks

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2023)

Abstract

In this study, we examine the impact of human mobility on the transmission of COVID-19, a highly contagious disease that has rapidly spread worldwide. To investigate this, we construct a mobility network that captures movement patterns between Brazilian cities and integrate it with time series data of COVID-19 infection records. Our approach considers the interplay between people’s movements and the spread of the virus. We employ two neural networks based on Graph Convolutional Network (GCN), which leverage spatial and temporal data inputs, to predict time series at each city while accounting for the influence of neighboring cities. In comparison, we evaluate LSTM and Prophet models that do not capture time series dependencies. By utilizing RMSE (Root Mean Square Error), we quantify the discrepancy between the actual number of COVID-19 cases and the predicted number of cases by the model among the models. Prophet achieves the best average RMSE of 482.95 with a minimum of 1.49, while LSTM performs the least despite having a low minimum RMSE. The GCRN and GCLSTM models exhibit mean RMSE error values of 3059.5 and 3583.88, respectively, with the lowest standard deviation values for RMSE errors at 500.39 and 452.59. Although the Prophet model demonstrates superior performance, its maximum RMSE value of 52,058.21 is ten times higher than the highest value observed in the Graph Convolutional Networks (GCNs) models. Based on our findings, we conclude that GCNs models yield more stable results compared to the evaluated models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    All data and source code are available at the repository link: https://github.com/hodfernando/BRACIS_GCN_2023.

References

  1. Cumulative cases of covid-19 in Brazil (2023). https://covid.saude.gov.br//. Accessed 06 May 2023

  2. Berlin, D.A., Gulick, R.M., Martinez, F.J.: Severe covid-19. N. Engl. J. Med. 383(25), 2451–2460 (2020)

    Article  Google Scholar 

  3. Chen, J., Wang, X., Xu, X.: Gc-lstm: graph convolution embedded lstm for dynamic network link prediction. Appl. Intell. 52(7), 7513–7528 (2022)

    Article  Google Scholar 

  4. Cota, W.: Monitoring the number of covid-19 cases and deaths in brazil at municipal and federative units level. SciELO Preprints (2020)

    Google Scholar 

  5. DASA: Cumulative cases of covid-19 in the world (2023). https://dadoscoronavirus.dasa.com.br/. Accessed 06 May 2023

  6. Davahli, M.R., Fiok, K., Karwowski, W., Aljuaid, A.M., Taiar, R.: Predicting the dynamics of the covid-19 pandemic in the united states using graph theory-based neural networks. Int. J. Environ. Res. Public Health 18(7), 3834 (2021)

    Article  Google Scholar 

  7. Fanelli, D., Piazza, F.: Analysis and forecast of covid-19 spreading in China, Italy and France. Chaos Solitons Fract. 134, 109761 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Freitas, V.L., Moreira, G.J., Santos, L.B.: Robustness analysis in an inter-cities mobility network: modeling municipal, state and federal initiatives as failures and attacks toward sars-cov-2 containment. PeerJ 8, e10287 (2020)

    Article  Google Scholar 

  9. Freitas, V.L.D.S., Konstantyner, T.C.R.D.O., Mendes, J.F., Sepetauskas, C.S.D.N., Santos, L.B.L.: The correspondence between the structure of the terrestrial mobility network and the spreading of covid-19 in Brazil. Cadernos de Saúde Pública 36, e00184820 (2020)

    Google Scholar 

  10. Gauvain, J.L., Lee, C.H.: Maximum a posteriori estimation for multivariate gaussian mixture observations of markov chains. IEEE Trans. Speech Audio Process. 2(2), 291–298 (1994)

    Article  Google Scholar 

  11. Gilks, W.R., Richardson, S., Spiegelhalter, D.: Markov Chain Monte Carlo in Practice. CRC Press, Boca Raton (1995)

    Book  MATH  Google Scholar 

  12. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015)

    Google Scholar 

  14. Lauer, S.A., et al.: The incubation period of coronavirus disease 2019 (covid-19) from publicly reported confirmed cases: estimation and application. Ann. Intern. Med. 172(9), 577–582 (2020)

    Article  Google Scholar 

  15. Li, Q., et al.: Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med. 382(13), 1199–1207 (2020)

    Article  Google Scholar 

  16. Lulia, M.M.E.T., de Oliveira, D.H.: Instituto brasileiro de geografia e estatística-ibge (1936)

    Google Scholar 

  17. Malki, Z., et al.: The covid-19 pandemic: prediction study based on machine learning models. Environ. Sci. Pollut. Res. 28, 40496–40506 (2021)

    Article  Google Scholar 

  18. Niepert, M., Ahmed, M., Kutzkov, K.: Learning convolutional neural networks for graphs. In: International Conference on Machine Learning, pp. 2014–2023. PMLR (2016)

    Google Scholar 

  19. Organization, W.H.: Covid-19 weekly epidemiological update, 119 edn. (2022). Accessed 23 Nov 2022

    Google Scholar 

  20. Rothan, H.A., Byrareddy, S.N.: The epidemiology and pathogenesis of coronavirus disease (covid-19) outbreak. J. Autoimmun. 109, 102433 (2020)

    Article  Google Scholar 

  21. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008)

    Article  Google Scholar 

  22. Seo, Y., Defferrard, M., Vandergheynst, P., Bresson, X.: Structured sequence modeling with graph convolutional recurrent networks. In: Cheng, L., Leung, A.C.S., Ozawa, S. (eds.) ICONIP 2018. LNCS, vol. 11301, pp. 362–373. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04167-0_33

    Chapter  Google Scholar 

  23. Smith, D., Moore, L., et al.: The sir model for spread of disease-the differential equation model. Convergence (2004)

    Google Scholar 

  24. Taylor, S.J., Letham, B.: Forecasting at scale. Am. Stat. 72(1), 37–45 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Vaishya, R., Javaid, M., Khan, I.H., Haleem, A.: Artificial intelligence (ai) applications for covid-19 pandemic. Diab. Metabolic Syndr. Clin. Res. Rev. 14(4), 337–339 (2020)

    Google Scholar 

  26. Velavan, T.P., Meyer, C.G.: The covid-19 epidemic. Trop. Med. Int. Health 25(3), 278–280 (2020)

    Article  Google Scholar 

  27. Xie, H., Li, D., Wang, Y., Kawai, Y.: Visualization method for the spreading curve of covid-19 in universities using gnn. In: 2022 IEEE International Conference on Big Data and Smart Computing (BigComp), pp. 121–128. IEEE (2022)

    Google Scholar 

  28. Zhu, N., et al.: A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382(8), 727–733 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Brazilian Agencies for Research and Development (CNPq, grants 441016/2020-0, 307151/2022-0, 308400/2022-4), (FAPEMIG, grants APQ-01518-21, APQ-01647-22), (CAPES, grants 88887.506931/2020-00) and Universidade Federal de Ouro Preto (UFOP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Henrique Oliveira Duarte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Duarte, F.H.O., Moreira, G.J.P., Luz, E.J.S., Santos, L.B.L., Freitas, V.L.S. (2023). Time Series Forecasting of COVID-19 Cases in Brazil with GNN and Mobility Networks. In: Naldi, M.C., Bianchi, R.A.C. (eds) Intelligent Systems. BRACIS 2023. Lecture Notes in Computer Science(), vol 14197. Springer, Cham. https://doi.org/10.1007/978-3-031-45392-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45392-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45391-5

  • Online ISBN: 978-3-031-45392-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics