Abstract
Judging the quality of handwriting based on visuo-structural criteria is fundamental for teachers when accompanying children who are learning to write. Automatic methods for quality assessment can support teachers when dealing with a large number of handwritings, in order to identify children who are having difficulties. In this paper, we investigate the potential of graph-based handwriting representation and graph matching to capture visuo-structural features and determine the legibility of cursive handwriting. On a comprehensive dataset of words written by children aged from 3 to 11 years, we compare the judgment of human experts with a graph-based analysis, both with respect to classification and clustering. The results are promising and highlight the potential of graph-based methods for handwriting evaluation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bara, F., Gentaz, É., Colé, P.: Comment les enfants apprennent-ils à écrire et comment les y aider. Apprentissages et enseignement. Sciences cognitives et éducation, 9–24 (2006)
Bara, F., Morin, M.-F., Montésinos-Gelet, I., Lavoie, N.: Conceptions et pratiques en graphomotricité chez des enseignants de primaire en france et au québec. Revue française de pédagogie. Recherches en éducation (176), 41–56 (2011)
Barnett, L., Anna, M.P., Rosenblum, S.: Development of the handwriting legibility scale (HLS): a preliminary examination of reliability and validity. Res. Dev. Disabil. 72, 240–247 (2018)
Biabiany, E., Bernard, D.C., Page, V., Paugam-Moisy, H.: Design of an expert distance metric for climate clustering: the case of rainfall in the lesser Antilles. Comput. Geosci. 145, 104612 (2020)
Biabiany, E., Page, V., Bernard, D.C., Paugam-Moisy, H.: Using an expert deviation carrying the knowledge of climate data in usual clustering algorithms. In: CAP and RFAIP Joint Conferences, Vannes, May 2020
Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. Int. J. Pattern Recogn. Artif. Intell. 18(3), 265–298 (2004)
Amorim, R.C.D., Hennig, C.: Recovering the number of clusters in data sets with noise features using feature rescaling factors. Inf. Sci. 324, 126–145 (2015)
Erez, N., Parush, S.: The Hebrew handwriting evaluation. School of Occupational Therapy. Faculty of Medicine. Hebrew University of Jerusalem, Israel (1999)
Fischer, A., Riesen, K., Bunke, H.: Graph similarity features for HMM-based handwriting recognition in historical documents. In: Proceedings International Conference on Frontiers in Handwriting Recognition, pp. 253–258 (2010)
Fischer, A., Suen, C.Y., Frinken, V., Riesen, K., Bunke, H.: Approximation of graph edit distance based on Hausdorff matching. Pattern Recogn. 48(2), 331–343 (2015)
Florence, B., Nathalie, B.-B.: Handwriting isolated cursive letters in young children: effect of the visual trace deletion. Learn. Instr. 74, 101439 (2021)
Fogel, Y., Rosenblum, S., Barnett, A.L.: Handwriting legibility across different writing tasks in school-aged children. Hong Kong J. Occup. Ther. 35(1), 44–51 (2022)
Hamdi, Y., Akouaydi, H., Boubaker, H., Alimi, A.M.: Handwriting quality analysis using online-offline models. Multimedia Tools Appl. 81(30), 43411–43439 (2022)
Hamstra-Bletz, L., DeBie, J., Den Brinker, B.P.L.M., et al.: Concise evaluation scale for children’s handwriting. Lisse Swets 1, 623–662 (1987)
Larsen, S.C., Hammill, D.D.: Test of legible handwriting (Pro-Ed, Austin, TX) (1989)
Lenssen, L., Schubert, E.: Clustering by direct optimization of the medoid silhouette. In: Skopal, T., Falchi, F., Lokoč, J., Sapino, M.L., Bartolini, I., Patella, M. (eds.) Similarity Search and Applications, pp. 190–204. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17849-8_15
Li, T., Rezaeipanah, A., El Din, E.M.T.: An ensemble agglomerative hierarchical clustering algorithm based on clusters clustering technique and the novel similarity measurement. J. King Saud Univ. Comput. Inf. Sci. 34(6, Part B), 3828–3842 (2022)
Maergner, P., et al.: Combining graph edit distance and triplet networks for offline signature verification. Pattern Recogn. Lett. 125, 527–533 (2019)
Phelps, J., Stempel, L.: Handwriting: evolution and evaluation. Ann. Dyslexia 37, 228–239 (1987)
Rémi, C., Nagau, J.: Copilotrace: a platform to process graphomotor tasks for education and graphonomics research. In: Carmona-Duarte, C., Díaz, M., Ferrer, M.A., Morales, A. (eds.) Intertwining Graphonomics with Human Movements - 20th International Conference of the International Graphonomics Society, IGS 2021, Las Palmas de Gran Canaria, Spain, 7–9 June 2022, Proceedings. LNCS, vol. 13424, pp. 129–143. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19745-1_10
Riba, P., Lladãs, J., Fornés, A.: Handwritten word spotting by inexact matching of grapheme graphs. In: Proceedings 13th International Conference on Document Analysis and Recognition, pp. 781–785 (2015)
Rosenblum, S., Parush, S., Weiss, P.L.: Computerized temporal handwriting characteristics of proficient and non-proficient handwriters. Am. J. Occup. Ther. 57(2), 129–138 (2003)
Rosenblum, S., Weiss, P.L., Parush, S.: Product and process evaluation of handwriting difficulties. Educ. Psychol. Rev. 15, 41–81 (2003)
Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Comput. Appl. Math. 20, 53–65 (1987)
Schubert, E., Lenssen, L.: Fast K-medoids clustering in rust and Python. J. Open Source Softw. 7(75), 4183 (2022)
Schubert, E., Rousseeuw, P.J.: Fast and eager K-medoids clustering: O(k) runtime improvement of the PAM, CLARA, and CLARANS algorithms. Inf. Syst. 101, 101804 (2021)
Scius-Bertrand, A., Studer, L., Fischer, A., Bui, M.: Annotation-free keyword spotting in historical Vietnamese manuscripts using graph matching. In: Proceedings International Workshop on Structural and Syntactic Pattern Recognition (SSPR) (2022)
Soppelsa, R., Albaret, J.-M.: Evaluation de l’écriture chez l’adolescent. le bhk ado. Entretiens de Psychomotricité, 66–76 (2012)
Stauffer, M., Fischer, A., Riesen, K.: Graph-Based Keyword Spotting. World Scientific (2019)
Vinter, A., Chartrel, E.: Effects of different types of learning on handwriting movements in young children. Learn. Instr. 20(6), 476–486 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Scius-Bertrand, A., Rémi, C., Biabiany, E., Nagau, J., Fischer, A. (2023). Towards Visuo-Structural Handwriting Evaluation Based on Graph Matching. In: Parziale, A., Diaz, M., Melo, F. (eds) Graphonomics in Human Body Movement. Bridging Research and Practice from Motor Control to Handwriting Analysis and Recognition. IGS 2023. Lecture Notes in Computer Science, vol 14285. Springer, Cham. https://doi.org/10.1007/978-3-031-45461-5_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-45461-5_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-45460-8
Online ISBN: 978-3-031-45461-5
eBook Packages: Computer ScienceComputer Science (R0)