Skip to main content

Abstract

Judging the quality of handwriting based on visuo-structural criteria is fundamental for teachers when accompanying children who are learning to write. Automatic methods for quality assessment can support teachers when dealing with a large number of handwritings, in order to identify children who are having difficulties. In this paper, we investigate the potential of graph-based handwriting representation and graph matching to capture visuo-structural features and determine the legibility of cursive handwriting. On a comprehensive dataset of words written by children aged from 3 to 11 years, we compare the judgment of human experts with a graph-based analysis, both with respect to classification and clustering. The results are promising and highlight the potential of graph-based methods for handwriting evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bara, F., Gentaz, É., Colé, P.: Comment les enfants apprennent-ils à écrire et comment les y aider. Apprentissages et enseignement. Sciences cognitives et éducation, 9–24 (2006)

    Google Scholar 

  2. Bara, F., Morin, M.-F., Montésinos-Gelet, I., Lavoie, N.: Conceptions et pratiques en graphomotricité chez des enseignants de primaire en france et au québec. Revue française de pédagogie. Recherches en éducation (176), 41–56 (2011)

    Google Scholar 

  3. Barnett, L., Anna, M.P., Rosenblum, S.: Development of the handwriting legibility scale (HLS): a preliminary examination of reliability and validity. Res. Dev. Disabil. 72, 240–247 (2018)

    Google Scholar 

  4. Biabiany, E., Bernard, D.C., Page, V., Paugam-Moisy, H.: Design of an expert distance metric for climate clustering: the case of rainfall in the lesser Antilles. Comput. Geosci. 145, 104612 (2020)

    Article  Google Scholar 

  5. Biabiany, E., Page, V., Bernard, D.C., Paugam-Moisy, H.: Using an expert deviation carrying the knowledge of climate data in usual clustering algorithms. In: CAP and RFAIP Joint Conferences, Vannes, May 2020

    Google Scholar 

  6. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. Int. J. Pattern Recogn. Artif. Intell. 18(3), 265–298 (2004)

    Google Scholar 

  7. Amorim, R.C.D., Hennig, C.: Recovering the number of clusters in data sets with noise features using feature rescaling factors. Inf. Sci. 324, 126–145 (2015)

    Article  MathSciNet  Google Scholar 

  8. Erez, N., Parush, S.: The Hebrew handwriting evaluation. School of Occupational Therapy. Faculty of Medicine. Hebrew University of Jerusalem, Israel (1999)

    Google Scholar 

  9. Fischer, A., Riesen, K., Bunke, H.: Graph similarity features for HMM-based handwriting recognition in historical documents. In: Proceedings International Conference on Frontiers in Handwriting Recognition, pp. 253–258 (2010)

    Google Scholar 

  10. Fischer, A., Suen, C.Y., Frinken, V., Riesen, K., Bunke, H.: Approximation of graph edit distance based on Hausdorff matching. Pattern Recogn. 48(2), 331–343 (2015)

    Google Scholar 

  11. Florence, B., Nathalie, B.-B.: Handwriting isolated cursive letters in young children: effect of the visual trace deletion. Learn. Instr. 74, 101439 (2021)

    Article  Google Scholar 

  12. Fogel, Y., Rosenblum, S., Barnett, A.L.: Handwriting legibility across different writing tasks in school-aged children. Hong Kong J. Occup. Ther. 35(1), 44–51 (2022)

    Google Scholar 

  13. Hamdi, Y., Akouaydi, H., Boubaker, H., Alimi, A.M.: Handwriting quality analysis using online-offline models. Multimedia Tools Appl. 81(30), 43411–43439 (2022)

    Google Scholar 

  14. Hamstra-Bletz, L., DeBie, J., Den Brinker, B.P.L.M., et al.: Concise evaluation scale for children’s handwriting. Lisse Swets 1, 623–662 (1987)

    Google Scholar 

  15. Larsen, S.C., Hammill, D.D.: Test of legible handwriting (Pro-Ed, Austin, TX) (1989)

    Google Scholar 

  16. Lenssen, L., Schubert, E.: Clustering by direct optimization of the medoid silhouette. In: Skopal, T., Falchi, F., Lokoč, J., Sapino, M.L., Bartolini, I., Patella, M. (eds.) Similarity Search and Applications, pp. 190–204. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17849-8_15

  17. Li, T., Rezaeipanah, A., El Din, E.M.T.: An ensemble agglomerative hierarchical clustering algorithm based on clusters clustering technique and the novel similarity measurement. J. King Saud Univ. Comput. Inf. Sci. 34(6, Part B), 3828–3842 (2022)

    Google Scholar 

  18. Maergner, P., et al.: Combining graph edit distance and triplet networks for offline signature verification. Pattern Recogn. Lett. 125, 527–533 (2019)

    Article  Google Scholar 

  19. Phelps, J., Stempel, L.: Handwriting: evolution and evaluation. Ann. Dyslexia 37, 228–239 (1987)

    Article  Google Scholar 

  20. Rémi, C., Nagau, J.: Copilotrace: a platform to process graphomotor tasks for education and graphonomics research. In: Carmona-Duarte, C., Díaz, M., Ferrer, M.A., Morales, A. (eds.) Intertwining Graphonomics with Human Movements - 20th International Conference of the International Graphonomics Society, IGS 2021, Las Palmas de Gran Canaria, Spain, 7–9 June 2022, Proceedings. LNCS, vol. 13424, pp. 129–143. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19745-1_10

  21. Riba, P., Lladãs, J., Fornés, A.: Handwritten word spotting by inexact matching of grapheme graphs. In: Proceedings 13th International Conference on Document Analysis and Recognition, pp. 781–785 (2015)

    Google Scholar 

  22. Rosenblum, S., Parush, S., Weiss, P.L.: Computerized temporal handwriting characteristics of proficient and non-proficient handwriters. Am. J. Occup. Ther. 57(2), 129–138 (2003)

    Google Scholar 

  23. Rosenblum, S., Weiss, P.L., Parush, S.: Product and process evaluation of handwriting difficulties. Educ. Psychol. Rev. 15, 41–81 (2003)

    Google Scholar 

  24. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Comput. Appl. Math. 20, 53–65 (1987)

    Article  MATH  Google Scholar 

  25. Schubert, E., Lenssen, L.: Fast K-medoids clustering in rust and Python. J. Open Source Softw. 7(75), 4183 (2022)

    Article  Google Scholar 

  26. Schubert, E., Rousseeuw, P.J.: Fast and eager K-medoids clustering: O(k) runtime improvement of the PAM, CLARA, and CLARANS algorithms. Inf. Syst. 101, 101804 (2021)

    Google Scholar 

  27. Scius-Bertrand, A., Studer, L., Fischer, A., Bui, M.: Annotation-free keyword spotting in historical Vietnamese manuscripts using graph matching. In: Proceedings International Workshop on Structural and Syntactic Pattern Recognition (SSPR) (2022)

    Google Scholar 

  28. Soppelsa, R., Albaret, J.-M.: Evaluation de l’écriture chez l’adolescent. le bhk ado. Entretiens de Psychomotricité, 66–76 (2012)

    Google Scholar 

  29. Stauffer, M., Fischer, A., Riesen, K.: Graph-Based Keyword Spotting. World Scientific (2019)

    Google Scholar 

  30. Vinter, A., Chartrel, E.: Effects of different types of learning on handwriting movements in young children. Learn. Instr. 20(6), 476–486 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Rémi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Scius-Bertrand, A., Rémi, C., Biabiany, E., Nagau, J., Fischer, A. (2023). Towards Visuo-Structural Handwriting Evaluation Based on Graph Matching. In: Parziale, A., Diaz, M., Melo, F. (eds) Graphonomics in Human Body Movement. Bridging Research and Practice from Motor Control to Handwriting Analysis and Recognition. IGS 2023. Lecture Notes in Computer Science, vol 14285. Springer, Cham. https://doi.org/10.1007/978-3-031-45461-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45461-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45460-8

  • Online ISBN: 978-3-031-45461-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics