Skip to main content

Combined Quantitative T2* Map and Structural T2-Weighted Tissue-Specific Analysis for Fetal Brain MRI: Pilot Automated Pipeline

  • Conference paper
  • First Online:
Perinatal, Preterm and Paediatric Image Analysis (PIPPI 2023)

Abstract

Over the past decade, automated 3D reconstruction and segmentation has been widely applied to processing and analysis of fetal MRI. While the majority of reported methods primarily focus on structural brain imaging, additional quantitative T2* information could improve characterisation of changes in functional tissue properties. In this work, we propose a first solution for automated combined tissue-specific analysis of 3D quantitative T2* map and structural T2-weighted (T2w) fetal brain MRI. We build upon the existing 3D structural brain analysis pipeline from SVRTK by adding fully automated 3D T2* reconstructions globally aligned to 3D segmented T2w images (already reconstructed in the standard radiological space) followed by deep learning T2* tissue parcellation. In addition, we assess the general applicability the proposed pipeline by analysing brain growth trajectories in 26 control T2w+T2* fetal MRI datasets from 20–28 weeks GA range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    SVRTK automated fetal MRI reconstruction and segmentation docker: https://hub.docker.com/r/fetalsvrtk/svrtk auto-2.20 tag.

  2. 2.

    MIRTK library: https://github.com/BioMedIA/MIRTK.

  3. 3.

    SVRTK toolbox: https://github.com/SVRTK/SVRTK.

  4. 4.

    SVRTK docker: https://hub.docker.com/r/fetalsvrtk/svrtk.

References

  1. Svrtk fetal MRI docker (2023). https://hub.docker.com/r/fetalsvrtk/svrtk

  2. Arun, K.S., et al.: Least-squares fitting of two 3-d point sets. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 9(5), 698–700 (1987)

    Article  Google Scholar 

  3. Baadsgaard, K., et al.: T2* weighted fetal MRI and the correlation with placental dysfunction. Placenta 131, 90–97 (2023)

    Article  Google Scholar 

  4. Cardoso, M.J., et al.: Monai: an open-source framework for deep learning in healthcare. arXiv preprint arXiv:2211.02701 (2022)

  5. Ebner, M., et al.: An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI. NeuroImage 206, 116324 (2020)

    Article  Google Scholar 

  6. Hall, M., et al.: Characterisation of placental, fetal brain and maternal cardiac structure and function in pre-eclampsia using MRI. medRxiv (2023)

    Google Scholar 

  7. Hutter, J., et al.: Multi-modal functional MRI to explore placental function over gestation. Magn. Reson. Med. 81, 1191–1204 (2019)

    Article  Google Scholar 

  8. Karimi, D., et al.: Learning to segment fetal brain tissue from noisy annotations. Med. Image Anal., 102731 (2023)

    Google Scholar 

  9. Kuklisova-Murgasova, M., et al.: Reconstruction of fetal brain MRI with intensity matching and complete outlier removal. MediAN 16(8), 1550–1564 (2012)

    Google Scholar 

  10. Oktay, O., et al.: Attention u-net: learning where to look for the pancreas. In: MIDDL 2016 (2018)

    Google Scholar 

  11. Payette, K., et al.: An automatic multi-tissue human fetal brain segmentation benchmark using the fetal tissue annotation dataset. Sci. Data 8, 1–14 (2021)

    Article  Google Scholar 

  12. Prayer, D., et al.: Isuog practice guidelines (updated): performance of fetal magnetic resonance imaging. Ultrasound Obstet. Gynecol. 61, 278–287 (2023)

    Article  Google Scholar 

  13. Salehi, S.S., Khan, S., Erdogmus, D., Gholipour, A.: Real-time deep pose estimation with geodesic loss for image-to-template rigid registration. IEEE TMI 38(2), 470–481 (2019)

    Google Scholar 

  14. Story, L., Rutherford, M.: Advances and applications in fetal magnetic resonance imaging. Obstet. Gynaecol. 17, 189–199 (2015)

    Article  Google Scholar 

  15. Story, L., et al.: Brain volumetry in fetuses that deliver very preterm: an MRI pilot study. NeuroImage: Clin. 30, 102650 (2021)

    Article  Google Scholar 

  16. Uus, A., et al.: Deformable slice-to-volume registration for motion correction of fetal body and placenta MRI. IEEE TMI 39, 2750–2759 (2020)

    Google Scholar 

  17. Uus, A., et al.: Deformable slice-to-volume registration for reconstruction of quantitative t2* placental and fetal MRI, pp. 222–232 (2020)

    Google Scholar 

  18. Uus, A.U., et al.: Automated 3d reconstruction of the fetal thorax in the standard atlas space from motion-corrupted MRI stacks for 21–36 weeks GA range. MedIAn 80 (2022)

    Google Scholar 

  19. Uus, A.U., et al.: Retrospective motion correction in foetal MRI for clinical applications: existing methods, applications and integration into clinical practice. Brit. J. Radiol. 96, 20220071 (2022)

    Google Scholar 

  20. Uus, A.U., et al.: Bounti: brain volumetry and automated parcellation for 3D fetal MRI. bioRxiv (2023)

    Google Scholar 

  21. Vasylechko, S., et al.: T2 relaxometry of fetal brain at 1.5 tesla using a motion tolerant method. Magn. Reson. Med. 73, 1795–1802 (2015)

    Article  Google Scholar 

  22. Xu, J., et al.: Nesvor: implicit neural representation for slice-to-volume reconstruction in MRI. IEEE Trans. Med. Imaging 42, 1707–1719 (2023)

    Article  Google Scholar 

Download references

Acknowledgments

We thank everyone who was involved in acquisition and analysis of the datasets and all participating mothers and families.

This work was supported by NIHR Advanced Fellowship awarded to Lisa Story [NIHR30166], MRC Confidence in concept [MC_PC_19041], the NIH Human Placenta Project grant [1U01HD087202-01], the Wellcome/ EPSRC Centre for Medical Engineering at King’s College London [WT 203148/Z/16/Z], the NIHR Clinical Research Facility (CRF) at Guy’s and St Thomas’ and by the National Institute for Health Research Biomedical Research Centre based at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London.

The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alena U. Uus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Uus, A.U. et al. (2023). Combined Quantitative T2* Map and Structural T2-Weighted Tissue-Specific Analysis for Fetal Brain MRI: Pilot Automated Pipeline. In: Link-Sourani, D., Abaci Turk, E., Macgowan, C., Hutter, J., Melbourne, A., Licandro, R. (eds) Perinatal, Preterm and Paediatric Image Analysis. PIPPI 2023. Lecture Notes in Computer Science, vol 14246. Springer, Cham. https://doi.org/10.1007/978-3-031-45544-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45544-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45543-8

  • Online ISBN: 978-3-031-45544-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics