Skip to main content

Brain MRI to PET Synthesis and Amyloid Estimation in Alzheimer’s Disease via 3D Multimodal Contrastive GAN

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2023)

Abstract

Positron emission tomography (PET) can detect brain amyloid-β (Aβ) deposits, a diagnostic hallmark of Alzheimer’s disease and a target for disease modifying treatment. However, PET-Aβ is expensive, not widely available, and, unlike magnetic resonance imaging (MRI), exposes the patient to ionizing radiation. Here we propose a novel 3D multimodal generative adversarial network with contrastive learning to synthesize PET-Aβ images from cheaper, more accessible, and less invasive MRI scans (T1-weighted and fluid attenuated inversion recovery [FLAIR] images). In tests on independent samples of paired MRI/PET-Aβ data, our synthetic PET-Aβ images were of high quality with a structural similarity index measure of 0.94, which outperformed previously published methods. We also evaluated synthetic PET-Aβ images by extracting standardized uptake value ratio measurements. The synthetic images could identify amyloid positive patients with a balanced accuracy of 79%, holding promise for potential future use in a diagnostic clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dubois, B., et al.: Revising the definition of Alzheimer’s disease: a new lexicon. The Lancet Neurol. 9(11), 1118–1127 (2010)

    Article  Google Scholar 

  2. McKhann, G.M., et al.: The diagnosis of dementia due to Alzheimer’s disease: recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7(3), 263–269 (2011)

    Article  Google Scholar 

  3. Jack, C.R., Jr., et al.: Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer’s disease. Brain 133(11), 3336–3348 (2010)

    Article  Google Scholar 

  4. Bateman, R.J., et al.: Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N. Engl. J. Med. 367, 795–804 (2012)

    Article  Google Scholar 

  5. Sikka, A., Peri, S.V., Bathula, D.R.: MRI to FDG-PET: cross-modal synthesis using 3D U-Net for multi-modal Alzheimer’s classification. In: Gooya, A., Goksel, O., Oguz, I., Burgos, N. (eds.) Simulation and Synthesis in Medical Imaging: Third International Workshop, SASHIMI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Proceedings 3: Springer, Cham, vol. 11037, pp. 80–89 (2018). https://doi.org/10.1007/978-3-030-00536-8_9

  6. Hu, S., Lei, B., Wang, S., Wang, Y., Feng, Z., Shen, Y.: Bidirectional mapping generative adversarial networks for brain MR to PET synthesis. IEEE Trans. Med. Imaging 41(1), 145–157 (2022)

    Article  Google Scholar 

  7. Zhang, J., He, X., Qing, L., Gao, F., Wang, B.: BPGAN: brain PET synthesis from MRI using generative adversarial network for multi-modal Alzheimer’s disease diagnosis. Comput. Methods Programs Biomed. 217, 106676 (2022)

    Article  Google Scholar 

  8. Khosla, P., et al.: Supervised contrastive learning. Adv. Neural. Inf. Process. Syst. 33, 18661–18673 (2020)

    Google Scholar 

  9. Hoopes, A., Mora, J.S., Dalca, A.V., Fischl, B., Hoffmann, M.: SynthStrip: skull-stripping for any brain image. Neuroimage 260, 119474 (2022)

    Article  Google Scholar 

  10. Avants, B.B., Tustison, N.J., Stauffer, M., Song, G., Wu, B., Gee, J.C.: The Insight ToolKit image registration framework. Front. Neuroinform. 8, 44 (2014)

    Article  Google Scholar 

  11. Desikan, R.S., et al.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3), 968–980 (2006)

    Article  Google Scholar 

  12. Bullich, S., et al.: Optimal reference region to measure longitudinal amyloid-beta change with (18)F-Florbetaben PET. J. Nucl. Med. 58(8), 1300–1306 (2017)

    Article  Google Scholar 

  13. Marcus, D.S., Wang, T.H., Parker, J., Csernansky, J.G., Morris, J.C., Buckner, R.L.: Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J. Cogn. Neurosci. 19(9), 1498–1507 (2007)

    Article  Google Scholar 

  14. Zhu, J.-Y., Park T., Isola P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

  15. Zhao, H., Gallo, O., Frosio, I., Kautz, J.: Loss functions for image restoration with neural networks. IEEE Trans. Comput. Imaging. 3(1), 47–57 (2016)

    Article  Google Scholar 

  16. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: Proceedings of the 34th International Conference on Machine Learning, PMLR, pp. 214–223 (2017)

    Google Scholar 

  17. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training of Wasserstein GANs. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, California, USA, pp. 5769–5779. Curran Associates Inc. (2017)

    Google Scholar 

  18. Kang, M., Park, J.: ContraGAN: contrastive learning for conditional image generation. Adv. Neural. Inf. Process. Syst. 33, 21357–21369 (2020)

    Google Scholar 

  19. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  20. Chiao, P., et al.: Impact of reference and target region selection on amyloid PET SUV ratios in the phase 1b PRIME study of Aducanumab. J. Nucl. Med. 60(1), 100–106 (2019)

    Article  Google Scholar 

  21. Veitch, D.P., et al.: Using the Alzheimer’s disease neuroimaging initiative to improve early detection, diagnosis, and treatment of Alzheimer’s disease. Alzheimer’s Dement. 18(4), 824–857 (2022)

    Article  Google Scholar 

  22. Ma, C., Hong, F., Yang, S.: Amyloidosis in Alzheimer’s disease: pathogeny, etiology, and related therapeutic directions. Molecules 27(4), 1210 (2022)

    Article  Google Scholar 

  23. Jack, C.R., et al.: Amyloid-first and neurodegeneration-first profiles characterize incident amyloid PET positivity. Neurology 81(20), 1732–1740 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jin, Y. et al. (2024). Brain MRI to PET Synthesis and Amyloid Estimation in Alzheimer’s Disease via 3D Multimodal Contrastive GAN. In: Cao, X., Xu, X., Rekik, I., Cui, Z., Ouyang, X. (eds) Machine Learning in Medical Imaging. MLMI 2023. Lecture Notes in Computer Science, vol 14348. Springer, Cham. https://doi.org/10.1007/978-3-031-45673-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45673-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45672-5

  • Online ISBN: 978-3-031-45673-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics