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Abstract. Transformers have recently shown promise for medical im-
age applications, leading to an increasing interest in developing such
models for medical image registration. Recent advancements in design-
ing registration Transformers have focused on using cross-attention (CA)
to enable a more precise understanding of spatial correspondences be-
tween moving and fixed images. Here, we propose a novel CA mech-
anism that computes windowed attention using deformable windows.
In contrast to existing CA mechanisms that require intensive compu-
tational complexity by either computing CA globally or locally with a
fixed and expanded search window, the proposed deformable CA can
selectively sample a diverse set of features over a large search window
while maintaining low computational complexity. The proposed model
was extensively evaluated on multi-modal, mono-modal, and atlas-to-
patient registration tasks, demonstrating promising performance against
state-of-the-art methods and indicating its effectiveness for medical im-
age registration. The source code for this work will be available after
publication.
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1 Introduction

Deep learning-based registration methods have emerged as a faster alternative
to optimization-based methods, with promising registration accuracy across a
range of registration tasks [1,10]. These methods often adopt convolutional neu-
ral networks (ConvNets), particularly U-Net-like networks [21], as the backbone
architecture [1,10]. Yet, due to the locality of the convolution operations, the ef-
fective receptive fields (ERFs) of ConvNets are only a fraction of their theoretical
receptive fields [12, 16]. This limits the performance of ConvNets in image regis-
tration, which often requires registration models to establish long-range spatial
correspondences between images.

Transformers, which originated from natural language processing tasks [26],
have shown promise in a variety of medical imaging applications [12], including
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Fig. 1: Graphical illustrations of different attention mechanisms. (a) The conven-
tional self-attention [6,26] used in ViT-V-Net [5] and DTN [29], which computes
attention for the concatenated tokens of moving and fixed images. (b) Cross-
attention used in Attention-Reg [25], which computes attention between the
tokens of moving and fixed images. (¢) Windowed self-attention [15] used in
TransMorph [4], which computes attention for the concatenated tokens of mov-
ing and fixed images within a local window. (d) Windowed cross-attention pro-
posed in XMorpher [23], which computes attention between the tokens of fixed
and moving images, specifically between two local windows of different sizes. (e)
The proposed deformable cross-attention mechanism, which computes attention
between tokens within a rectangular window and a deformed window with an
arbitrary shape but the same size as the rectangular window.

registration [4,5,29]. Transformers employ the self-attention (SA) mechanism,
which can either be a global operation [6] or computed locally within large
windows [15]. Consequently, Transformers have been shown to capture long-
range spatial correspondences for registration more effectively than ConvNets [4].

Several recent advancements in Transformer-based registration models have
focused on developing cross-attention (CA) mechanisms, such as XMorpher [23]
and Attention-Reg [25]. CA improves upon SA by facilitating the efficient fusion
of high-level features between images to improve the comprehension of spatial
correspondences. However, the existing CA mechanisms still have drawbacks;
either they compute CA globally [25], which prevents hierarchical feature ex-
traction and applies only to low-resolution features, or they compute CA within
a fixed but expanded window [23], which significantly increases computational
complexity.

In this paper, we present a hybrid Transformer-ConvNet model based on a
novel deformable CA mechanism for image registration. As shown in Fig. 1, the
proposed deformable CA module differs from existing SA and CA modules in
that it employs the windowed attention mechanism [15] with a learnable offset.
This allows the sampling windows of the reference image to take on any shapes
based on the offsets, offering several advantages over existing methods: 1) In
contrast to the CA proposed in [23], which calculates attention between win-
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dows of varying sizes, the proposed deformable CA module samples tokens from
a larger search region, which can even encompass the entire image. Meanwhile,
the attention computation is confined within a uniform window size, thereby
keeping the computational complexity low. 2) The deformable CA enables the
proposed model to focus more on the regions where the disparity between the
moving and fixed images is significant, in comparison to the baseline ConvNets
and SA-based Transformers, leading to improved registration performance. Com-
prehensive evaluations were conducted on mono- and multi-modal registration
tasks using publicly available datasets. The proposed model competed favorably
against existing state-of-the-art methods, showcasing its promising potential for
a wide range of image registration applications.

2 Background and Related Works

Self-attention. SA [6,20] is typically applied to a set of tokens (i.e., embed-
dings that represent patches of the input image). Let £ € RY*P be a set of
N tokens with D-dimensional embeddings. The tokens are first encoded by a
fully connected layer U, 1., € RP*Pakv to obtain three matrix representations,
Queries @, Keys K, and Values V: [Q, K,V| = zU 1. ,. Subsequently, the scaled
dot-product attention is calculated using SA(z) = softmax(%)V. In general,
SA computes a normalized score for each token based on the dot product of Q
and K. This score is then used to decide which Value token to attend to.
Cross-attention. CA is a frequently used variant of SA for inter- and intra-
modal tasks in computer vision [2, 11, 28] and has been investigated for its po-
tential in image registration [14,23,25]. CA differs from SA in terms of how
the matrix representations are computed. As CA is typically used between two
modalities or images (i.e., a base image and a reference image), the matrices @,
K, and V are generated using different inputs:

Q. K,
V Dy,

where x;, and z, denote, respectively, the tokens of the base and the reference.
In [25], Song et al. introduced Attention-Reg, which employs Eqn. 1 to compute
CA between a moving and a fixed image. To ensure low computational complex-
ity, CA is computed globally between the downsampled features extracted by
ConvNets. However, because CA is only applied to a single resolution, it does
not provide hierarchical feature fusion across different resolutions, a factor that
is deemed important for several successful registration models [19, 20]. More
recently, Shi et al. introduced XMorpher [23], which is based on the Swin Trans-
former [15]. In XMorpher, CA is computed between the local windows of the
tokens of different resolutions, enabling hierarchical feature fusion. As shown
in Fig. 1 (d), the local windows are of different sizes, with a base window of
size N, = h X w X d and a larger search window of size Ny = ah X fw X ~d,
where «, 3, and ~ are set equally to 3. Using a larger search window facili-
tates the effective establishment of spatial correspondence, but it also increases

[Kb,Vb} = .’IIbUk’v, Qr = .’Equ, CA(:E) = Softmax( )Vb, (1)
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Fig. 2: The overall framework of the proposed method. (a) The proposed network
architecture, which is composed of parallel Transformer encoders and a ConvNet
decoder to generate a deformation field. (b) The deformable CA, which fuses fea-
tures between encoders. (¢) The schematic of the deformable window partitioning
strategy. (d) An example of deformable CA computation in the DW-MCA.

the computational complexity of each CA module. Specifically, if the same win-
dow size of N, is used, the complexity of CA is approximately O(NZDy,). How-
ever, if windows of different sizes, N, and Ny, are used, the complexity becomes
O(NyNsDy) = O(aByNEDy,), where affy = 3 x 3 x 3 = 27. This means that
using a larger search window would increase the computational complexity dra-
matically (by 27 times) and quickly become computationally infeasible.

Enlarging the search space while keeping computational costs low is chal-
lenging for 3D medical image registration. In this paper, we try to solve it with
a deformable CA module that operates on equal-sized windows. This module
not only provides hierarchical feature fusion, but also allows more efficient token
sampling over a larger region than previously mentioned CA modules. Addition-
ally, the proposed CA maintains a low computational complexity.

3 Proposed Method

The proposed model is depicted in Fig. 2 (a), which has dual Transformer en-
coders with deformable CA modules that enable effective communication be-
tween them. Each encoder is similar to the Swin [15] used in TransMorph [4],
but the SA modules are replaced with the deformable CA modules. To integrate
the features between each stage of the two encoders, we followed [25] by adding
the features and passing them to the decoder via skip connections. In contrast
to XMorpher [23], which uses a Transformer for the decoder, we opted for the
ConvNet decoder introduced in [3,4]. This choice was motivated by the inductive
bias that ConvNets bring in, which Transformers typically lack [12]. ConvNets
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are also better at refining features for subsequent deformation generation, ow-
ing to the locality of convolution operations. Moreover, ConvNets have fewer
parameters, making them efficient and hence speeding up the training process.
Cross-attention Transformer. Our model employs parallel deformable CA
encoders to extract hierarchical features from the moving and fixed images in
the encoding stage. At each resolution of the encoder, k successive deformable
CA modules are applied to vertically fuse features between the two encoders. The
deformable cross-attention module takes in a base (i.e., ;) and a reference (i.e.,
z,), and computes the attention between them, with the reference guiding the
network on where to focus within the base. As shown in Fig. 2 (a), one encoding
path uses the moving and fixed images as the base and reference, respectively,
whereas the other encoding path switches the roles of the base and reference,
using the moving image as the reference and the fixed image as the base.
Deformable Cross-attention. Fig. 2 (b) depicts the core element of the pro-
posed model, the deformable CA. The module first applies LayerNorm (LN)
to x, and z,, then partitions x; into non-overlapping rectangular equal-sized
windows, following [15]. Next, the x; is projected into K and V), embeddings
through a linear layer. This process is expressed as [Ky, V] = WP(LN(z,)) Uy 0,
where WP(-) denotes the window partition operation. On the other hand, the
window partitioning for 2, is based on the offsets, Ap, learned by a lightweight
offset network. As shown in Fig. 2 (¢), this network comprises two consecutive
convolutional layers (depth-wise and regular convolutional layers) and takes the
added z, and z, as input. The offsets, Ap, shift the sampling positions of the
rectangular windows beyond their origins, allowing tokens to be sampled outside
these windows. Specifically, Ap are first divided into equal-sized windows, Ap,,,
and tokens in z, are subsequently sampled based on Ap,, using trilinear inter-
polation. Note that this sampling process is analogous to first resampling the
tokens based on the offsets and then partitioning them into windows. We gen-
erated a different set of Ap,, for each head in the multi-head attention, thereby
enabling diverse sampling of the tokens across heads. The proposed deformable
window-based multi-head CA (DW-MCA) is then expressed as:

[Kb, Vb] = WP(LN((Bb))Uk)U,
Ap = eAp(mbu-Tr)a pr = WP(A]D)7 Qr = ¢(-’1?r;]9 + pr)Uk7
- @)
DW-MCA(z) = softmax(Qr bV,
V Dy,

where 6, denotes the offset network and ¢(-;-) is the interpolation function.
To introduce cross-window connections, the shifted window partitioning strat-
egy [15] was implemented in successive Transformer blocks.

The attention computation of the deformable CA is nearly identical to the
conventional window-based SA employed in Swin [15], with the addition of a
lightweight offset network whose complexity is approximately O(m3NyDy,) (m
is the convolution kernel size and m® ~ Np). As a result, the overall complex-
ity of the proposed CA module is O(2NZDy,), which comprises the complexity
of the offset network and the CA computation. In comparison, the CA used in
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XMorpher [23] has a complexity of O(27NZDy), as outlined in section 2. This
highlights the three main advantages of the deformable CA module: 1) it en-
ables token sampling beyond a pre-defined window, theoretically encompassing
the entire image size, 2) it allows sampling windows to overlap, improving com-
munication between windows, and 3) it maintains fixed-size windows for the CA
computation, thereby retaining low computational complexity.

The deformable CA, the deformable attention (DA) [27], and the Swin DA
(SDA) [9] share some similarities, but there are fundamental differences. Firstly,
DA computes attention globally within a single modality or image, whereas
the deformable CA utilizes windowed attention and a hierarchical architecture
to fuse features of different resolutions across images or modalities. Secondly,
the offset network in DA and SDA is applied solely to the Query embeddings
of input tokens, and SDA generates offsets based on window-partitioned tokens,
leading to square-shaped “windowing” artifacts in the sampling grid, as observed
in [9]. In contrast, in the deformable CA, the offset network is applied to all
tokens of both the reference and the base to take advantage of their spatial
correspondences, resulting in a smoother and more meaningful sampling grid, as
demonstrated in Figure 2 (d). Lastly, while DA and SDA use a limited number of
reference points to interpolate tokens during sampling, deformable CA employs
a dense set of reference points with the same resolution as the input tokens,
allowing deformable CA to sample tokens more diversely.

4 Experiments

Dataset and Pre-processing. The proposed method was tested on three pub-
licly available datasets to evaluate its performance on three registration tasks:
1) inter-patient multi-modal registration, 2) inter-patient mono-modal registra-
tion, and 3) atlas-to-patient registration. The dataset used for the first task is
the ALBERTSs dataset [7], which consists of T1- and T2-weighted brain MRIs
of 20 infants. Manual segmentation of the neonatal brain was provided, each
consisting of 50 ROIs. The patients were randomly split into three sets with a
ratio of 10:4:6. We performed inter-patient T1-to-T2 registration, which resulted
in 90, 12, and 30 image pairs for training, validation, and testing, respectively.
For the second and third registration tasks, we used the OASIS dataset [17] from
the Learn2Reg challenge [%] and the IXI dataset” from [1], respectively. The for-
mer includes 413 T1 brain MRI images, of which 394 were assigned for training
and 19 for testing. The latter consists of 576 T1 brain MRI images, which were
distributed as 403 for training, 58 for validation, and 115 for testing. For the
third task, we used a moving image, which was a brain atlas image obtained
from [10]. All images from the three datasets were cropped to the dimensions of
160 x 192 x 224.

Evaluation Metrics. To assess the registration performance, the Dice coeffi-
cient was used to measure the overlap of the anatomical label maps. Moreover,

* https://brain-development.org/ixi-dataset /
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OASIS (Mono-modality) IXI (Atlas-to-patient)
Method Dicet HdD95. SDlogJ | Method Dice? %|J] <01l %NDV]
ConvexAdam [24]]| 0.846+0.016 1.5001+0.304 0.067+0.005 VoxelMorph [I] [ 0.73240.123 6.26% 1.04%
LapIRN [15] 0.861+0.015 1.51440.337 0.072+0.007 CycleMorph [10]| 0.737+0.123 6.38% 1.15%
TransMorph [4] | 0.8624+0.014 1.43140.282 0.12840.021 TM-bspl [1] 0.761£0.128 0% 0%
TM-TVF [3] 0.869+0.014 1.396+0.295 0.094+0.018 TM-TVF [3] 0.756+£0.122 2.05% 0.36%
XMorpher* [23] [ 0.854+0.012 1.647+0.346 0.100+£0.016 XMorpher* [23] [ 0.7514+0.123 0% 0%
TM-DCA 0.873+0.015 1.4/00+0.368 0.1054+0.028 TM-DCA 0.763+0.128 0% 0%
ALBERTSs (Multi-modality)
Method DiceT %|J] < 01 %NDV]
VoxelMorph [24]] 0.6514+0.159 0.04% 0.02%
TransMorph [41] [ 0.67240.159 0.15% 0.04%
TM-TVF [3] 0.72240.132 0.13% 0.03%
XMorpher* [23] [ 0.710£0.135 0.11% 0.03%
TM-DCA 0.724+0.131  0.24% 0.07%

Table 1: Quantitative results for mono-modal (OASIS) and multi-modal inter-
patient (ALBERTS) registration tasks, as well as atlas-to-patient (IXI) registra-
tion tasks. Note that part of the OASIS results was obtained from Learn2Reg
leaderboard [8].
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Fig.3: Qualitative results and a visualization of Grad-CAM [22] heat maps of
the comparative registration models generated for a pair of images.

for the OASIS dataset, we additionally used Hausdorff distance (HdD95) to
evaluate performance and the standard deviation of the Jacobian determinant
(SDlogJ) to assess deformation invertibility, in accordance with Learn2Reg. For
the ALBERTSs and IXI datasets, we used two metrics, the percentage of all non-
positive Jacobian determinant (%|J| < 0) and the non-diffeomorphic volume
(%NDV), both proposed in [13], to evaluate deformation invertibility since they
are more accurate measures under the finite-difference approximation.

Results and Discussion. The proposed model, TM-DCA, was evaluated against
several state-of-the-art models on the three registration tasks, and the corre-
sponding quantitative outcomes are presented in Table 1. Note that our GPU
was unable to accommodate the original XMorpher [23] (>48 GB) for the image
size used in this study. This is likely due to the large window CA computation
and the full Transformer architecture used by the model. To address this, we used
the encoder of XMorpher in combination with the decoder of TM-DCA (denoted
as XMorpher™*) to reduce GPU burden and facilitate a more precise comparison
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between the deformable CA in TM-DCA and the CA used in XMorpher. On the
OASIS dataset, TM-DCA achieved the highest mean Dice score of 0.873, which was
significantly better than the second-best performing method, TM-TVF [3], as con-
firmed by a paired t-test with p < 0.01. On the IXT dataset, TM-DCA achieved the
highest mean Dice score of 0.763, which was significantly better than TM-bspl
with p < 0.01. Remarkably, TM-DCA produced diffeomorphic registration with
almost no folded voxels, using the same decoder as TM-bspl. Finally, on the
ALBERT'S dataset, TM-DCA again achieved the highest mean Dice score of 0.713,
which was significantly better than TM-TVF with p = 0.04 < 0.05, thus demon-
strating its superior performance in multi-modal registration. It is important
to note that the proposed TM-DCA model and its CA (i.e., XMorpher) and SA
(i.e., TM-TVF and TM-bspl) counterparts differed only in their encoders, while
the decoder used was identical for all models. TM-DCA consistently outperformed
the baselines across the three applications, supporting the effectiveness of the
proposed CA module.

Qualitative comparison results between the registration models are presented
in Fig. 3. In addition, we conducted a comparison of the Grad-CAM [22] heat
map for various learning-based registration models. The heat maps were gener-
ated by computing the NCC between the deformed moving image and the fixed
image, and were then averaged across the convolutional layers at the end of the
decoder, just prior to the final layer that predicts the deformation field. Notably,
VoxelMorph exhibited inadequate focus on the differences between the image
pair, which may be attributed to ConvNets’ limited ability to explicitly compre-
hend contextual information in the image. The SA-based models (TransMorph
and TM-TVF) showed similar trends, wherein they focused reasonably well on re-
gions with significant differences but relatively less attention was given to areas
with minor differences. In contrast, the attention of CA-based models was more
uniformly distributed, with the proposed TM-DCA method more effectively captur-
ing differences than XMorpher. The presented heat maps highlight the superior
performance of the proposed CA mechanism in effectively interpreting contextual
information and accurately capturing spatial correspondences between images.
In combination with the observed improvements in performance across various
registration tasks, these results suggest that TM-DCA has significant potential as
the preferred attention mechanism for image registration applications.

5 Conclusion

In this study, we introduced a Transformer-based network for unsupervised im-
age registration. The proposed model incorporates a novel CA module that com-
putes attention between the features of the moving and fixed images. Unlike
the SA and CA mechanisms used in existing methods, the proposed CA module
computes attention between tokens sampled from a square window and a learned
window of arbitrary shape. This enables the efficient computation of attention
while allowing the extraction of useful features from a large window to accu-
rately capture spatial correspondences between images. The proposed method
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was evaluated against several state-of-the-art methods on multiple registration
tasks and demonstrated significant performance improvements compared to the
baselines, highlighting the effectiveness of the proposed CA module.
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Appendix
A Data Preprocessing

ALBERTSs. We used a kernel density estimate-based method to normalize the
images. Additionally, since patients exhibit considerable anatomical differences
due to rapid growth, we performed affine registration to align all patients affinely
with the first patient. This approach ensures that the only cause of misalignment
among the volumes is nonlinear.

IXI & OASIS. We used FreeSurfer to perform standard procedures for brain
MRI. Anatomical label maps, including over 30 ROIs, were generated for both
datasets.

B Hyperparameters Settings

Loss Loss Wt.  Decoder Data Aug. Patch Sz. Embd. Sz. Layer Num. (k)
OASIS | NCC+Dice+Diff. [1,1,1] TM-TVF [3] - 1 96 {4,4,5}
IXI NCC+Diff. [1,1] TM-bspl [{] Rand. Flip 4 96 {4,4,5}
ALBERTSs|MIND+Dice+Diff. [1,1,1] TM-TVF [3] Rand. Affine 4 96 {4,4,5}

Table 2: Training setups for the proposed registration model. The proposed
registration model was trained using the decoder from TM-TVF and TM-bspl for
different datasets. The window size was set to {5,6, 7}, which is consistent with
the window sizes used in TransMorph. The time step used in TM-TVF was set to 7.
The models were trained for 500 epochs with the Adam optimizer and a learning
rate of le-4. The PyTorch framework was used for model implementation, and
training was performed on an NVIDIA A6000 GPU.
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C Deformable Window Partition & Window Partition

Cyclic Shift
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Xp
(Window Partition)
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xf
(Deformable
‘Window Partition)

Xp
(Window Partition)
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Xr
(Deformable
Window Partition)

Fig. 4: The proposed window partitioning strategy in the first and second stages
of the network is visualized in the figure, where each color represents a unique
sampling window. Recall that the deformable window partitioning is applied to
the reference image x,, while the rectangular window partitioning is applied to
the base image x;,. Subsequently, the cross-attention is computed between the
windows in z;, and x,. It is evident that the deformable window partitioning
concentrates the sampling locations in information-rich regions.
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D Additional Quantitative Results
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Fig. 6: Quantitative results of atlas-to-patient registration on the IXI dataset.



