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Abstract. Magnetic resonance (MR) images collected in 2D scanning
protocols typically have large inter-slice spacing, resulting in high in-
plane resolution but reduced through-plane resolution. Super-resolution
techniques can reduce the inter-slice spacing of 2D scanned MR images,
facilitating the downstream visual experience and computer-aided di-
agnosis. However, most existing super-resolution methods are trained
at a fixed scaling ratio, which is inconvenient in clinical settings where
MR scanning may have varying inter-slice spacings. To solve this issue,
we propose Hierarchical Feature Conditional Diffusion (HiFi-Diff) for
arbitrary reduction of MR inter-slice spacing. Given two adjacent MR
slices and the relative positional offset, HiFi-Diff can iteratively con-
vert a Gaussian noise map into any desired in-between MR slice. Fur-
thermore, to enable fine-grained conditioning, the Hierarchical Feature
Extraction (HiIFE) module is proposed to hierarchically extract condi-
tional features and conduct element-wise modulation. Our experimen-
tal results on the publicly available HCP-1200 dataset demonstrate the
high-fidelity super-resolution capability of HiFi-Diff and its efficacy in
enhancing downstream segmentation performance.

Keywords: Magnetic Resonance Imaging - Super-resolution - Diffusion
Model - Conditional Image Synthesis

1 Introduction

Magnetic resonance imaging (MRI) is essential for analyzing and diagnosing
various diseases, owing to its non-invasive property and superior contrast for
soft tissues. In clinical practice, 2D scanning protocols are commonly employed
for MR image acquisition due to limitations in scanning time and signal-to-noise
ratio. Typically, such scanning protocols produce MR volumes with small intra-
slice spacing but much larger inter-slice spacing, which poses a great challenge
for many volumetric image processing toolkits [5I13] that require near-isotropic
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Fig. 1. A test case of applying HiFi-Diff to arbitrary reduction of MR inter-slice (sagit-
tal) spacing. The visual quality of the resulting images in the axial and coronal views
is gradually enhanced with increasing SR factors.

voxel spacing of the input images. Therefore, it is necessary to resample the
acquired volumes to align the inter-slice spacing with the intra-slice spacing.

Interpolation methods are widely used to reduce the inter-slice spacing of 2D
scanned MR volumes. However, these methods simply calculate missing voxels
as a weighted average of the adjacent ones, leading to inevitable blurred results.
For better performance, many deep-learning-based super-resolution (SR) studies
have been investigated [7UTI2I2TIT2]. In this paper, we term large slice spacing
as low resolution (LR) and small slice spacing as high resolution (HR). DeepRe-
solve [I] adopts a 3D convolutional network to obtain HR images from LR ones,
but it only considers reducing inter-slice spacing at a fixed ratio. Training such
an SR model for each scaling ratio is impractical, as it requires significant time
and computational resources.

To tackle this issue, local implicit image function (LIIF) [2] and MetaSR [12]
are proposed to perform arbitrary-scale SR for natural images. To achieve arbitrary-
scale SR of MR images, ArSSR [2I] extends LIIF to 3D volumes and utilizes a
continuous implicit voxel function for reconstructing HR images at different ra-
tios. Although ArSSR produces competitive quantitative results, it still suffers
from image over-smoothing. To solve the aforementioned problem, adversarial
learning [9] is usually introduced to synthesize more image details. However,
such a training scheme often leads to training instability and is prone to gener-
ate artifacts [I8]6].

Recently, diffusion models [T9/TT] have achieved wide success in image synthe-
sis tasks, outperforming other deep generative models in terms of visual fidelity
and training stability. Typical denoising diffusion models (e.g., DDPM [I1]) use
a series of denoising operations to iteratively generate samples from a prior dis-
tribution (e.g., Gaussian) to a desired data distribution. Although there exist
several works that apply diffusion models for MR image reconstruction [4] or
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Fig. 2. Conditional diffusion process of HiFi-Diff, where ¢; and pg denote single-step
transitions in forward and reverse processes, respectively.

denoising [3], the application of diffusion models to achieve arbitrary-scale MR,
image super-resolution has not been studied yet.

In this paper, by leveraging the powerful ability of the diffusion models, we
propose Hierarchical Feature Conditional Diffusion (HiFi-Diff), which allows
arbitrary reduction of inter-slice spacing for 2D scanned MR images, as shown
in Fig. [T} Conditioned on two adjacent LR slices, HiFi-Diff can generate any in-
between MR slices. To handle different ratios of inter-slice spacing, we construct
continuous representations for the spatial positions between two adjacent LR
slices by providing relative positional offsets as additional conditions. Inspired
by the core idea of FPN [I5], we propose the Hierarchical Feature Extraction
(HiFE) module, which applies different-scale feature maps as conditions to per-
form element-wise feature modulation in each layer. The experimental results
demonstrate that HiFi-Diff produces MR slices of excellent quality and effec-
tively enhances downstream image segmentation tasks.

In summary, the main contributions of this paper include: (1) To the best of
our knowledge, HiFi-Diff is the first diffusion model for arbitrary-scale SR of MR
images. (2) We propose the HiFE module to hierarchically extract conditional
features for fine-grained conditioning on MR slice generation.

2 Method

We discuss the conditional diffusion process and the network architecture of
HiFi-Diff in Section [2.I] and Section [2.2] respectively.

2.1 Conditional Diffusion for Arbitrary-scale Super-resolution

Let 28 € R¥*W denote a sample from 2D MR slice distribution, where the
subscript 0 refers to the initial timestep and the superscript i refers to the slice
index. For arbitrary-scale SR, we aim to learn continuous representations for
the spatial positions between any two adjacent MR slices in an LR volume.
Specifically, we define the generated slice between z} and xé“ as xé““ , Where
k € [0,1] is a non-integral offset denoting its relative distance to zj.

Similar to DDPM [11], HiFi-Diff learns a Markov chain process to convert
the Gaussian distribution into the target data distribution, as demonstrated in

Fig. 2} The forward diffusion process gradually adds Gaussian noises €; to the
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target MR slice a:é"’k according to a variance schedule g; from t = 0tot =T,

which can be represented as:

ge(o 2y t]) = N (@™ V1 = By fh, B, (1)

Furthermore, we can directly sample acz from xffrk at an arbitrary timestep ¢

in a closed form using the following accumulated expression:

qt(xf;+k|x6+k) = N(xiJrk; \/atx6+k, (1-ap)I) = :rfrk \/atx6+k+(1—at)e, (2)

where @ = [[._;(1 — 8s) and € ~ A/(0,T). To gain the generation ability for
MR slices, HiFi-Diff learns the reverse diffusion via a parameterized Gaussian
process pg(x;" 1|xt , Teond) conditioned on the feature pyramid Zconq:

i+k

po(T;~ 1|xl+k

xcond) = N(xzzf—Hi:v Mo (It ) ta I’CO’nd)7 U?I)v (3)
2

where oy is a fixed variance and pyg (scé ,t, Zeond) 18 & learned mean defined as:

; 1 B _
itk i+k t i+k
Tt Teond) = ——= | @ — ————€p(x; "t Teon 4
po(y d) -3, ( t T-a, o(7y d)) (4)

where €g(z; itk g , Teond) denotes the main branch of HiFi-Diff for noise prediction.
To generate in- between slices x8+k, we iteratively compute the denoising process
z;'Hf = g (xi™ kot Teond) + 01z, where z ~ N(0,1).

HiFi-Diff is trained in an end-to-end manner by optimizing the simple variant

of the variational lowerbound Lg;mpie With respect to 6 and ¢:

A 2
ESimPl€(97 (b) = Emé+k,t,mwnd |:H69<$i+k, ta xcond) - EtH21|

i ) ()

= E,on g i |[eo(@d ™t Fola, g™ k) — a5
where Fy parameterizes the proposed HiFE module, ¢, is the Gaussian distribu-
tion data with A'(0,I), and ¢ is a timestep uniformly sampled from [0, T'].

2.2 Hierarchical Feature Conditioning Framework
Given any pair of z}) and xéﬂ from an LR volume with a desired offset k, HiFi-
Diff is able to iteratively convert a Gaussian noise map into the target in-between
slice xé"'k through a reversed diffusion process, as described in the last section.

In this section, we introduce the network architecture of HiFi-Diff. As illus-
trated in Fig. a)7 the adjacent MR slices x} and :E6+1 are concatenated and
input to the proposed HiFE module, which adopts a U-Net [I7] architecture
consisting of a stack of residual blocks (shown in Fig. [3(b)). The offset k is in-
jected into each residual block to perform channel-wise modulation. Specifically,
k is projected by two successive fully connected layers into a 128-dimensional
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Fig. 3. Overview of Hierarchical Feature Conditional Diffusion (HiFi-Diff).

index embedding. Next, for each layer, the index embedding is passed through a
learnable affine transformation to obtain the channel-wise scaling and bias pa-
rameters (kg, k), which are applied to the feature map h using the expression
ChannelMod(h, ks, ky) = ksGroupNorm(h) + kp. In this way, the HIFE module
yields an hourglass-like feature hierarchy that includes feature maps at different
scales, with semantics ranging from low to high levels.

Conditioned on the timestep t and the feature pyramid Z.onq, the main
branch of HiFi-Diff learns to gradually denoise the noise-corrupted input slice
2%, The main branch has the same U-Net architecture as HiFE module and
consists of a stack of conditional residual blocks. For each conditional resid-
ual block (shown in Fig. C)) in the main branch, the timestep ¢ performs
channel-wise modulation in the same way that the offset k does in each resid-
ual block of HiFE module. After the channel-wise modulation, the feature map
is further modulated by z.onq from the lateral connection at the same im-
age level. The conditional feature T onq is transformed into the scaling and
bias parameters (x4, xp) that have the same spatial sizes as the feature map
h, such that Z.onq can shift group-normalized h in an element-wise manner:
ElementMod(h, zs, 2p) = x;GroupNorm(h) + 2. Through element-wise modu-
lation, the hierarchical feature pyramid z.o,q provides fine-grained conditioning
to guide the MR slice generation.



6 X. Wang et al.

Table 1. Quantitative comparison of x4, x5, x6, and x7 SR tasks between the pro-

posed HiFi-Diff and other SR methods.

Dice

Task Method PSNR SSIM WM ol
Interpolation | 36.05+2.304 | 0.9758+0.0070 | 0.9112+0.0084 | 0.7559+0.0177
DeepResolve 39.65:‘:2‘281 0.9880i()‘0()39 0.9700i0.0021 0.92301:0‘0055
! MetaSR 39.30+2.287 | 0.9876+0.0039 | 0.9672+0.0027 | 0.915240.0065
ArSSR 39.6542.282 | 0.988440.0037 | 0.9687+0.0026 | 0.917140.0067
w/o HiFE 38.78 12298 | 0.987410.0039 | 0.9639+0.0033 | 0.9118+0.007s
HiFi-Diff 39.5042.285 0.98904+0.0040 0.970040.0045 0.922910.0057
Interpolation | 31.55+2381 | 0.954210.0113 | 0.8362+0.0000 | 0.6470+0.0136
DeepResolve 38.2812_318 0.9848i()‘0047 0.961710,0028 0.90061()‘0070
<5 MetaSR 37~95j:2.279 0.9840i0,0049 0.9522;&0_0043 0.8808i0,0100
ArSSR 38.271+2.261 | 0.9850+0.0045 | 0.955210.0039 | 0.8847+0.0100
W/O HiFE 37-53i2,289 0.9832i()‘0()51 0.9538i0.0042 0.8827i()‘0109
HiFi-Diff 38.2542.260 | 0.985240.0047 | 0.9620+0.0060 | 0.9007+0.0104
Interpolation | 30.4442379 | 0.9457+0.0120 | 0.79671+0.0111 | 0.5749+0.0159
DeepResolve | 37.2142.315 | 0.981440.0055 | 0.952140.0033 | 0.8786+0.0078
«6 MetaSR 36-55j:2.286 0-9792i0.0061 0.9286i0_0066 0.8298i0_0142
ArSSR 36.6242.271 | 0.979810.0058 | 0.9330+0.0061 | 0.8358+0.0141
w/o HiFE 36.67+2.202 | 0.980140.0058 | 0.941440.0042 | 0.8569+0.0097
HiFi-Diff 374149314 | 0.9827+0.0054 | 0.952740.0111 0.8798+0.0169
Interpolation 29.61i2_379 0.9386i0.0142 0.7611j:0_0130 0-5144i0.0185
DeepResolve 36.35+2.303 0.978240.0063 0.9387+0.0046 0.8468+0.0104
<7 MetaSR 35-2712,308 0.97391()‘0074 0.898810,0092 0.76911()‘0180
ArSSR 35.2012.289 | 0.974110.0072 | 0.903410.0090 | 0.773910.0192
w/o HiFE 35.86+2.316 | 0.9766+0.0070 | 0.924510.0056 | 0.8254+0.0122
HiFi-Diff 36.58 12328 | 0.979710.0062 | 0.9401+0.0103 | 0.855040.0177

3 Experimental Results

3.1 Dataset and Experimental Setup

Data Preparation We collect 1,113 subjects of 3T MR images from the
HCP-1200 dataset [8], with all images having an isotropic voxel spacing of
0.7mmx0.7mmx0.7mm. Among these, 891 images are used for training, and
the remaining 222 images are used for testing. We perform N4 bias correction
and skull-stripping for preprocessing. It is noteworthy that skull-stripping is nec-
essary in order to protect the privacy of the subjects. To simulate the LR images
with large slice spacing, we downsample the isotropic HR volumes perpendicular
to the sagittal view following [IJ.

Implementation Details To achieve a comprehensive evaluation, we com-
pare HiFi-Diff with other methods for MR super-resolution, including trilinear
interpolation, DeepResolve [1], MetaSR [12], and ArSSR [2I]. DeepResolve is
trained and tested for each specific scaling ratio, while HiFi-Diff, MetaSR, and
ArSSR are trained using mixed scaling ratios of x2, x3, x4 for arbitrary-scale
super-resolution. In each iteration of training, we corrupt the intermediate slice
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Fig. 4. Qualitative comparison of x4 SR task between the proposed HiFi-Diff and
other SR methods. The cerebellum regions are highlighted and zoomed in.

$6+k with Gaussian noise according to the randomly sampled timestep t. We set
T = 1000 during training, and use DDIM sampler [20] to speed up the reverse
process by reducing T' = 1000 to 7" = 100. All the experiments are conducted
using an NVIDIA A100 40G with PyTorch [I6]. We use the learning rate of
1.0 x 1074, batch size of 1, and Adam optimizer [14] to train our model for 700k

iterations.

3.2 Super-resolution Evaluation

We use Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index
(SSIM) to evaluate the consistency between the SR results and ground truth.
Based on the results in Table [I} the proposed HiFi-Diff method outperforms
other state-of-the-art methods, particularly at large scaling ratios. It is worth
mentioning that DeepResolve achieves the highest PSNR scores at scaling ra-
tios of x4 and x5, which can be attributed to the fact that DeepResolve is
specifically trained for each scaling ratio.

In addition, we conduct an ablation study to assess the effectiveness of the
HiFE module by removing it and comparing the results. In detail, we directly
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Trilinear Interp. Ground Truth

DeepResolve MetaSR ArSSR HiFi-Diff

Fig. 5. Visual comparison of the fully automatic segmentation on x4 SR results by all
the comparing models. The sagittal, axial, and coronal views are shown in three rows,
respectively. The areas surrounded by the white boxes are zoomed in below.

inject the concatenated slices into the main branch for element-wise modula-
tion, and concatenate the embedding of offset k£ and timestep ¢ for channel-wise
modulation. The results show a decrease in all metrics when the HiFE module
is removed, indicating that HiFi-Diff benefits from the fine-grained conditioning
provided by the HiFE module.

The qualitative comparison of the generated in-between MR slices with dif-
ferent offsets is shown in Fig. 4l By inspection of the cerebellum, one can notice
that other methods fail to produce complete and clear structures of the white
matter for they are optimized using L1/L2 loss, driving their results towards
over-smoothing and loss of high-frequency information. In contrast, HiFi-Diff
can faithfully reconstruct image details through an iterative diffusion process.

To validate the effectiveness of the proposed HiFi-Diff on downstream tasks,
we conduct brain segmentation on different SR results using Fastsurfer [10].
According to Table [I HiFi-Diff outperforms other methods in terms of Dice
score for the white matter (WM) and the gray matter (GM) in most scenarios.
The visual comparison in Fig. [5| further demonstrates the superiority of HiFi-
Diff, as other methods yield tissue adhesion or discontinuity in their segmented
results, while our approach avoids these problems.
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Conclusion and Discussion

In conclusion, we propose HiFi-Diff to conduct arbitrary reduction of MR inter-
slice spacing, outperforming previous methods in both generation capability and
downstream task performance by leveraging the power of the diffusion models. To
further enhance fine-grained conditioning, we introduce the HiFE module, which
hierarchically extracts conditional features and conducts element-wise feature
modulations. Despite the superior performance, HiFi-Diff still suffers from slow
sampling speed. One possible solution is the implementation of faster sampling
algorithms or the utilization of techniques such as knowledge distillation.
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