Skip to main content

Dual-Stream Model with Brain Metrics and Images for MRI-Based Fetal Brain Age Estimation

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14348))

Included in the following conference series:

  • 572 Accesses

Abstract

The disparity between chronological age and estimated brain age from images is a significant indicator of abnormalities in brain development. However, MRI-based brain age estimation still encounters considerable challenges due to the unpredictable movement of the fetus and maternal abdominal motions, leading to fetal brain MRI scans of extremely low quality. In this work, we propose a novel deep learning-based dual-stream fetal brain age estimation framework, involving brain metrics and images. Given a stack of MRI data, we first locate and segment out brain regions of every slice. Since brain metrics are highly correlated with age, we introduce four brain metrics into the model. To enhance the representational capacity of these metrics in space, we design them as vector-based discrete spatial metrics(DSM). Then we design the 3D-FetalNet and DSM-Encoder to extract visual and metric features respectively. Additionally, we apply the Global and local regression to enable the model to learn various patterns across different age ranges. We evaluate our model on a fetal brain MRI dataset with 238 subjects and reach the age estimation error of 0.75 weeks. Our proposed method achieves state-of-the-art results compared with other models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beheshti, I., Maikusa, N., Matsuda, H.: The accuracy of t1-weighted voxel-wise and region-wise metrics for brain age estimation. Comput. Methods Programs Biomed. 214, 106585 (2021)

    Article  Google Scholar 

  2. Bethlehem, R.A.I., et al.: Brain charts for the human lifespan. Nature 604(7906), 525–533 (2022)

    Article  Google Scholar 

  3. Brown, G.L., et al.: J. Neurol. Neurosurg. (2003)

    Google Scholar 

  4. Brugger, P., et al.: Methods of fetal MR: beyond t2-weighted imaging. Eur. J. Radiol. 57, 172–181 (2006)

    Article  Google Scholar 

  5. Cole, J.H., Franke, K.: Predicting age using neuroimaging: innovative brain ageing biomarkers. Trends Neurosci. 40(12), 681–690 (2017)

    Article  Google Scholar 

  6. Cole, J.H., et al.: Prediction of brain age suggests accelerated atrophy after traumatic brain injury. Ann. Neurol. 77(4), 571–581 (2015)

    Article  Google Scholar 

  7. Ding, X., Guo, Y., et al, X.: ACNet: strengthening the kernel skeletons for powerful CNN via asymmetric convolution blocks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1911–1920 (2019)

    Google Scholar 

  8. Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica: Int. J. Geograph. Inf. Geovisualization 10(2), 112–122 (1973)

    Article  Google Scholar 

  9. Ebner, M., et al.: An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI. NeuroImage 206, 116324 (2020)

    Google Scholar 

  10. Elman, J.L.: Finding structure in time. Cogn. Sci. 14(2), 179–211 (1990)

    Article  Google Scholar 

  11. Franke, K., et al.: Estimating the age of healthy subjects from t1-weighted MRI scans using kernel methods: exploring the influence of various parameters. Neuroimage 50(3), 883–892 (2010)

    Article  Google Scholar 

  12. Gao, H., et al.: Densely connected convolutional networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4700–4708 (2017)

    Google Scholar 

  13. Glenn, O., Barkovich, A.: Magnetic resonance imaging of the fetal brain and spine: an increasingly important tool in prenatal diagnosis, part 1. Am. J. Neuroradiol. 27(8), 1604–1611 (2006)

    Google Scholar 

  14. He, K., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE/CVF Iinternational Conference on Computer Vision, pp. 770–778 (2016)

    Google Scholar 

  15. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7132–7141 (2018)

    Google Scholar 

  16. Işık, Ş, Büyüktiryaki, M., Şimşek, G.K., Kutman, H.G.K., Canpolat, F.E.: Relationship between biparietal diameter/ventricular ratio and neurodevelopmental outcomes in non-handicapped very preterm infants. Child’s Nerv. Syst. 37, 1121–1126 (2020)

    Article  Google Scholar 

  17. Cheng, J., et al.: Brain age estimation from MRI using cascade networks with ranking loss. IEEE Trans. Med. Imaging 40(12), 3400–3412 (2021)

    Article  Google Scholar 

  18. Liao, L., et al.: Multi-branch deformable convolutional neural network with label distribution learning for fetal brain age prediction. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 424–427 (2020)

    Google Scholar 

  19. Malinger, G., et al.: Fetal brain imaging: a comparison between magnetic resonance imaging and dedicated neurosonography. Ultrasound in Obstetrics Gynecology: Official J. Int. Soc. Ultrasound Obstetrics Gynecol. 23(4), 333–340 (2004)

    Google Scholar 

  20. Persson, P., Weldner, B.M.: Normal range growth curves for fetal biparietal diameter, occipito frontal diameter, mean abdominal diameters and femur length. Acta Obstetricia et Gynecologica Scandinavica 65 (1986)

    Google Scholar 

  21. Prayer, D., et al.: Fetal MRI: techniques and protocols. Pediatric Radiol. 34, 685–693 (2004)

    Google Scholar 

  22. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)

    Article  MATH  Google Scholar 

  23. Shen, L., et al.: Deep learning with attention to predict gestational age of the fetal brain. arXiv (2018)

    Google Scholar 

  24. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)

    Google Scholar 

  25. Van, P.V., et al.: Assessment of brain two-dimensional metrics in infants born preterm at term equivalent age: correlation of ultrasound scans with magnetic resonance imaging. Front. Pediatrics 10 (2022)

    Google Scholar 

  26. Vaswani, A., et al.: Attention is all you need. Adv. Neural. Inf. Process. Syst. 30, 5998–6008 (2017)

    Google Scholar 

  27. Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In: Maurer, H. (ed.) New Results and New Trends in Computer Science. LNCS, vol. 555, pp. 359–370. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0038202

    Chapter  Google Scholar 

  28. Whitmore, L.B., Weston, S.J., Mills, K.L.: Brainage as a measure of maturation during early adolescence. bioRxiv (2023)

    Google Scholar 

  29. Zhang, J., Petitjean, C., Lopez, P., Ainouz, S.: Direct estimation of fetal head circumference from ultrasound images based on regression CNN. In: International Conference on Medical Imaging with Deep Learning (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, S. et al. (2024). Dual-Stream Model with Brain Metrics and Images for MRI-Based Fetal Brain Age Estimation. In: Cao, X., Xu, X., Rekik, I., Cui, Z., Ouyang, X. (eds) Machine Learning in Medical Imaging. MLMI 2023. Lecture Notes in Computer Science, vol 14348. Springer, Cham. https://doi.org/10.1007/978-3-031-45673-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45673-2_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45672-5

  • Online ISBN: 978-3-031-45673-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics