Skip to main content

Consistency Loss for Improved Colonoscopy Landmark Detection with Vision Transformers

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14349))

Included in the following conference series:

  • 972 Accesses

Abstract

Colonoscopy is a procedure used to examine the colon and rectum for colorectal cancer or other abnormalities including polyps or diverticula. Apart from the actual diagnosis, manually processing the snapshots taken during the colonoscopy procedure (for medical record keeping) consumes a large amount of the clinician’s time. This can be automated through post-procedural machine learning based algorithms which classify anatomical landmarks in the colon. In this work, we have developed a pipeline for training vision-transformers for identifying anatomical landmarks, including appendiceal orifice, ileocecal valve/cecum landmark and rectum retroflection. To increase the accuracy of the model, we utilize a hybrid approach that combines algorithm-level and data-level techniques. We introduce a consistency loss to enhance model immunity to label inconsistencies, as well as a semantic non-landmark sampling technique aimed at increasing focus on colonic findings. For training and testing our pipeline, we have annotated 307 colonoscopy videos and 2363 snapshots with the assistance of several medical experts for enhanced reliability. The algorithm identifies landmarks with an accuracy of 92% on the test dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adewole, S., et al.: Deep learning methods for anatomical landmark detection in video capsule endoscopy images. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) FTC 2020. AISC, vol. 1288, pp. 426–434. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-63128-4_32

    Chapter  Google Scholar 

  2. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.A.: Mixmatch: a holistic approach to semi-supervised learning. In: Advances in Neural Information Processing Systems 32 (2019)

    Google Scholar 

  3. Cao, Y., Liu, D., Tavanapong, W., Wong, J., Oh, J., De Groen, P.C.: Automatic classification of images with appendiceal orifice in colonoscopy videos. In: 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2349–2352. IEEE (2006)

    Google Scholar 

  4. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  MATH  Google Scholar 

  5. Che, K., et al.: Deep learning-based biological anatomical landmark detection in colonoscopy videos. arXiv preprint arXiv:2108.02948 (2021)

  6. Chowdhury, A.S., Yao, J., VanUitert, R., Linguraru, M.G., Summers, R.M.: Detection of anatomical landmarks in human colon from computed tomographic colonography images. In: 2008 19th International Conference on Pattern Recognition, pp. 1–4. IEEE (2008)

    Google Scholar 

  7. Cooper, J.A., Ryan, R., Parsons, N., Stinton, C., Marshall, T., Taylor-Phillips, S.: The use of electronic healthcare records for colorectal cancer screening referral decisions and risk prediction model development. BMC Gastroenterol. 20(1), 1–16 (2020)

    Article  Google Scholar 

  8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  9. Dosovitskiy, A., et al.: an image is worth 16\(\,\times \,\)16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  10. Estabrooks, A., Japkowicz, N.: A mixture-of-experts framework for learning from imbalanced data sets. In: Hoffmann, F., Hand, D.J., Adams, N., Fisher, D., Guimaraes, G. (eds.) IDA 2001. LNCS, vol. 2189, pp. 34–43. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44816-0_4

    Chapter  MATH  Google Scholar 

  11. Fan, Y., Kukleva, A., Dai, D., Schiele, B.: Revisiting consistency regularization for semi-supervised learning. Int. J. Comput. Vis. 131, 1–18 (2022). https://doi.org/10.1007/s11263-022-01723-4

    Article  Google Scholar 

  12. Foret, P., Kleiner, A., Mobahi, H., Neyshabur, B.: Sharpness-aware minimization for efficiently improving generalization. arXiv preprint arXiv:2010.01412 (2020)

  13. Ghesu, F.C., Georgescu, B., Mansi, T., Neumann, D., Hornegger, J., Comaniciu, D.: An artificial agent for anatomical landmark detection in medical images. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 229–237. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_27

    Chapter  Google Scholar 

  14. Jo, T., Japkowicz, N.: Class imbalances versus small disjuncts. ACM SIGKDD Explor. Newsl. 6(1), 40–49 (2004)

    Article  Google Scholar 

  15. Johnson, J.M., Khoshgoftaar, T.M.: Survey on deep learning with class imbalance. J. Big Data 6(1), 1–54 (2019)

    Article  Google Scholar 

  16. Katzir, L., et al.: Estimating withdrawal time in colonoscopies. In: Computer Vision-ECCV 2022 Workshops: Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part III, pp. 495–512. Springer (2023). https://doi.org/10.1007/978-3-031-25066-8_28

  17. Mamonov, A.V., Figueiredo, I.N., Figueiredo, P.N., Tsai, Y.H.R.: Automated polyp detection in colon capsule endoscopy. IEEE Trans. Med. Imaging 33(7), 1488–1502 (2014)

    Article  Google Scholar 

  18. McDonald, C.J., Callaghan, F.M., Weissman, A., Goodwin, R.M., Mundkur, M., Kuhn, T.: Use of internist’s free time by ambulatory care electronic medical record systems. JAMA Intern. Med. 174(11), 1860–1863 (2014)

    Article  Google Scholar 

  19. Morelli, M.S., Miller, J.S., Imperiale, T.F.: Colonoscopy performance in a large private practice: a comparison to quality benchmarks. J. Clin. Gastroenterol. 44(2), 152–153 (2010)

    Article  Google Scholar 

  20. Morgan, E., et al.: Global burden of colorectal cancer in 2020 and 2040: incidence and mortality estimates from GLOBOCAN. Gut 72(2), 338–344 (2023)

    Article  Google Scholar 

  21. Mullick, S.S., Datta, S., Das, S.: Generative adversarial minority oversampling. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1695–1704 (2019)

    Google Scholar 

  22. Park, S.Y., Sargent, D., Spofford, I., Vosburgh, K.G., Yousif, A., et al.: A colon video analysis framework for polyp detection. IEEE Trans. Biomed. Eng. 59(5), 1408–1418 (2012)

    Article  Google Scholar 

  23. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  24. Qadir, H.A., Shin, Y., Solhusvik, J., Bergsland, J., Aabakken, L., Balasingham, I.: Toward real-time polyp detection using fully CNNs for 2D gaussian shapes prediction. Med. Image Anal. 68, 101897 (2021)

    Article  Google Scholar 

  25. Sohn, K., et al.: FixMatch: simplifying semi-supervised learning with consistency and confidence. Adv. Neural. Inf. Process. Syst. 33, 596–608 (2020)

    Google Scholar 

  26. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Process. Manage. 45(4), 427–437 (2009)

    Article  Google Scholar 

  27. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Tamhane, A., Mida, T., Posner, E., Bouhnik, M.: Colonoscopy landmark detection using vision transformers. In: Imaging Systems for GI Endoscopy, and Graphs in Biomedical Image Analysis: First MICCAI Workshop, ISGIE 2022, and Fourth MICCAI Workshop, GRAIL 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Proceedings, pp. 24–34. Springer (2022). https://doi.org/10.1007/978-3-031-21083-9_3

  29. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  30. Vuttipittayamongkol, P., Elyan, E.: Neighbourhood-based undersampling approach for handling imbalanced and overlapped data. Inf. Sci. 509, 47–70 (2020)

    Article  Google Scholar 

  31. Zhang, J., et al.: Colonoscopic screening is associated with reduced colorectal cancer incidence and mortality: a systematic review and meta-analysis. J. Cancer 11(20), 5953 (2020)

    Article  Google Scholar 

  32. Zhou, S.K., et al.: A review of deep learning in medical imaging: imaging traits, technology trends, case studies with progress highlights, and future promises. In: Proceedings of the IEEE (2021)

    Google Scholar 

  33. Zhou, S.K., Xu, Z.: Landmark detection and multiorgan segmentation: representations and supervised approaches. In: Handbook of Medical Image Computing and Computer Assisted Intervention, pp. 205–229. Elsevier (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erez Posner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tamhane, A., Dobkin, D., Shtalrid, O., Bouhnik, M., Posner, E., Mida, T. (2024). Consistency Loss for Improved Colonoscopy Landmark Detection with Vision Transformers. In: Cao, X., Xu, X., Rekik, I., Cui, Z., Ouyang, X. (eds) Machine Learning in Medical Imaging. MLMI 2023. Lecture Notes in Computer Science, vol 14349. Springer, Cham. https://doi.org/10.1007/978-3-031-45676-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45676-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45675-6

  • Online ISBN: 978-3-031-45676-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics