Skip to main content

Class-Balanced Deep Learning with Adaptive Vector Scaling Loss for Dementia Stage Detection

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2023)

Abstract

Alzheimer’s disease (AD) leads to irreversible cognitive decline, with Mild Cognitive Impairment (MCI) as its prodromal stage. Early detection of AD and related dementia is crucial for timely treatment and slowing disease progression. However, classifying cognitive normal (CN), MCI, and AD subjects using machine learning models faces class imbalance, necessitating the use of balanced accuracy as a suitable metric. To enhance model performance and balanced accuracy, we introduce a novel method called VS-Opt-Net. This approach incorporates the recently developed vector-scaling (VS) loss into a machine learning pipeline named STREAMLINE. Moreover, it employs Bayesian optimization for hyperparameter learning of both the model and loss function. VS-Opt-Net not only amplifies the contribution of minority examples in proportion to the imbalance level but also addresses the challenge of generalization in training deep networks. In our empirical study, we use MRI-based brain regional measurements as features to conduct the CN vs MCI and AD vs MCI binary classifications. We compare the balanced accuracy of our model with other machine learning models and deep neural network loss functions that also employ class-balanced strategies. Our findings demonstrate that after hyperparameter optimization, the deep neural network using the VS loss function substantially improves balanced accuracy. It also surpasses other models in performance on the AD dataset. Moreover, our feature importance analysis highlights VS-Opt-Net’s ability to elucidate biomarker differences across dementia stages.

This work was supported in part by the NIH grants U01 AG066833, R01 LM013463, U01 AG068057, P30 AG073105, and R01 AG071470, and the NSF grant IIS 1837964. Data used in this study were obtained from the Alzheimer’s Disease Neuroimaging Initiative database (adni.loni.usc.edu), which was funded by NIH U01 AG024904.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For existing machine learning models, optimized parameters can be found in https://github.com/UrbsLab/STREAMLINE.

  2. 2.

    For the latest information, visit www.adni-info.org.

References

  1. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2623–2631 (2019)

    Google Scholar 

  2. Association, A., et al.: 2012 Alzheimer’s disease facts and figures. Alzheimer’s & Dement. 8(2), 131–168 (2012)

    Article  Google Scholar 

  3. Cao, K., Wei, C., Gaidon, A., Arechiga, N., Ma, T.: Learning imbalanced datasets with label-distribution-aware margin loss. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  4. De Santi, S., et al.: Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiol. Aging 22(4), 529–539 (2001)

    Article  Google Scholar 

  5. Du, A.T.: Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 71(4), 441–447 (2001)

    Article  Google Scholar 

  6. Dubey, R., Zhou, J., Wang, Y., Thompson, P.M., Ye, J.: Analysis of sampling techniques for imbalanced data: an n = 648 ADNI study. Neuroimage 87, 220–241 (2014)

    Article  Google Scholar 

  7. Fan, Y., Batmanghelich, N., Clark, C.M., Davatzikos, C., Initiative, A.D.N., et al.: Spatial patterns of brain atrophy in mci patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline. Neuroimage 39(4), 1731–1743 (2008)

    Article  Google Scholar 

  8. Hu, S., Yu, W., Chen, Z., Wang, S.: Medical image reconstruction using generative adversarial network for Alzheimer disease assessment with class-imbalance problem. In: 2020 IEEE 6th International Conference on Computer and Communications (ICCC), pp. 1323–1327. IEEE (2020)

    Google Scholar 

  9. Kim, D., et al.: A graph-based integration of multimodal brain imaging data for the detection of early mild cognitive impairment (E-MCI). In: Shen, L., Liu, T., Yap, P.-T., Huang, H., Shen, D., Westin, C.-F. (eds.) MBIA 2013. LNCS, vol. 8159, pp. 159–169. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02126-3_16

    Chapter  Google Scholar 

  10. Kini, G.R., Paraskevas, O., Oymak, S., Thrampoulidis, C.: Label-imbalanced and group-sensitive classification under overparameterization. In: Advances in Neural Information Processing Systems, vol. 34, pp. 18970–18983 (2021)

    Google Scholar 

  11. Li, J., et al.: Persistent feature analysis of multimodal brain networks using generalized fused lasso for EMCI identification. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 44–52. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_5

    Chapter  Google Scholar 

  12. Li, M., Zhang, X., Thrampoulidis, C., Chen, J., Oymak, S.: Autobalance: Optimized loss functions for imbalanced data. In: Advances in Neural Information Processing Systems, vol. 34, pp. 3163–3177 (2021)

    Google Scholar 

  13. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  14. Menon, A.K., Jayasumana, S., Rawat, A.S., Jain, H., Veit, A., Kumar, S.: Long-tail learning via logit adjustment. arXiv preprint arXiv:2007.07314 (2020)

  15. Miller, M.I., et al.: Amygdala atrophy in MCI/Alzheimer’s disease in the BIOCARD cohort based on diffeomorphic morphometry. In: Medical Image Computing and Computer-Assisted Intervention: MICCAI... International Conference on Medical Image Computing and Computer-Assisted Intervention, vol. 2012, p. 155. NIH Public Access (2012)

    Google Scholar 

  16. Miller, M.I., et al.: Amygdala atrophy in MCI/Alzheimer’s disease in the BIOCARD cohort based on diffeomorphic morphometry. In: Medical Image Computing and Computer-Assisted Intervention: MICCAI. International Conference on Medical Image Computing and Computer-Assisted Intervention, vol. 2012, p. 155. NIH Public Access (2012)

    Google Scholar 

  17. Puspaningrum, E.Y., Wahid, R.R., Amaliyah, R.P., et al.: Alzheimer’s disease stage classification using deep convolutional neural networks on oversampled imbalance data. In: 2020 6th Information Technology International Seminar (ITIS), pp. 57–62. IEEE (2020)

    Google Scholar 

  18. Rasmussen, J., Langerman, H.: Alzheimer’s disease – why we need early diagnosis. Degenerative Neurol. Neuromuscul. Dis. Volume 9, 123–130 (2019)

    Google Scholar 

  19. Sadegh-Zadeh, S.A., et al.: An approach toward artificial intelligence Alzheimer’s disease diagnosis using brain signals. Diagn. 13(3), 477 (2023)

    Article  Google Scholar 

  20. Shen, L., et al.: Identifying neuroimaging and proteomic biomarkers for MCI and AD via the elastic net. In: Liu, T., Shen, D., Ibanez, L., Tao, X. (eds.) MBIA 2011. LNCS, vol. 7012, pp. 27–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24446-9_4

    Chapter  Google Scholar 

  21. Tarzanagh, D.A., Hou, B., Tong, B., Long, Q., Shen, L.: Fairness-aware class imbalanced learning on multiple subgroups. In: Uncertainty in Artificial Intelligence, pp. 2123–2133. PMLR (2023)

    Google Scholar 

  22. Tong, B., et al.: Comparing amyloid imaging normalization strategies for Alzheimer’s disease classification using an automated machine learning pipeline. AMIA Jt. Summits Transl. Sci. Proc. 2023, 525–533 (2023)

    Google Scholar 

  23. Urbanowicz, R., Zhang, R., Cui, Y., Suri, P.: Streamline: a simple, transparent, end-to-end automated machine learning pipeline facilitating data analysis and algorithm comparison. In: Genetic Programming Theory and Practice XIX, pp. 201–231. Springer (2023). https://doi.org/10.1007/978-981-19-8460-0_9

  24. Uwishema, O., et al.: Is Alzheimer’s disease an infectious neurological disease? a review of the literature. Brain Behav. 12(8), e2728 (2022)

    Article  Google Scholar 

  25. Wang, X., et al.: Exploring automated machine learning for cognitive outcome prediction from multimodal brain imaging using streamline. AMIA Jt. Summits Transl. Sci. Proc. 2023, 544–553 (2023)

    Google Scholar 

  26. Weiner, M.W., Veitch, D.P., Aisen, P.S., et al.: The Alzheimer’s disease neuroimaging initiative: a review of papers published since its inception. Alzheimers Dement. 9(5), e111-94 (2013)

    Article  Google Scholar 

  27. Weiner, M.W., Veitch, D.P., Aisen, P.S., et al.: Recent publications from the Alzheimer’s disease neuroimaging initiative: reviewing progress toward improved AD clinical trials. Alzheimer’s Dement. 13(4), e1–e85 (2017)

    Article  Google Scholar 

  28. Ye, H.J., Chen, H.Y., Zhan, D.C., Chao, W.L.: Identifying and compensating for feature deviation in imbalanced deep learning. arXiv preprint arXiv:2001.01385 (2020)

  29. Zeng, L., Li, H., Xiao, T., Shen, F., Zhong, Z.: Graph convolutional network with sample and feature weights for Alzheimer’s disease diagnosis. Inf. Process. Manage. 59(4), 102952 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tong, B. et al. (2024). Class-Balanced Deep Learning with Adaptive Vector Scaling Loss for Dementia Stage Detection. In: Cao, X., Xu, X., Rekik, I., Cui, Z., Ouyang, X. (eds) Machine Learning in Medical Imaging. MLMI 2023. Lecture Notes in Computer Science, vol 14349. Springer, Cham. https://doi.org/10.1007/978-3-031-45676-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45676-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45675-6

  • Online ISBN: 978-3-031-45676-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics