Abstract
While deep learning techniques have provided the state-of-the-art performance in various clinical tasks, explainability regarding their decision-making process can greatly enhance the credence of these methods for safer and quicker clinical adoption. With high flexibility, Gradient-weighted Class Activation Mapping (Grad-CAM) has been widely adopted to offer intuitive visual interpretation of various deep learning models’ reasoning processes in computer-assisted diagnosis. However, despite the popularity of the technique, there is still a lack of systematic study on Grad-CAM’s performance on different deep learning architectures. In this study, we investigate its robustness and effectiveness across different popular deep learning models, with a focus on the impact of the networks’ depths and architecture types, by using a case study of automatic pneumothorax diagnosis in X-ray scans. Our results show that deeper neural networks do not necessarily contribute to a strong improvement of pneumothorax diagnosis accuracy, and the effectiveness of GradCAM also varies among different network architectures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
SIIM-ACR Pneumothorax Segmentation: https://www.kaggle.com/competitions/siim-acr-pneumothorax-segmentation/data.
References
Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020)
Çallı, E., Sogancioglu, E., van Ginneken, B., van Leeuwen, K.G., Murphy, K.: Deep learning for chest x-ray analysis: a survey. Med. Image Anal. 72, 102125 (2021)
Chen, J., et al.: Transunet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Lee, Y.-H., Won, J.H., Kim, S., Auh, Q.-S., Noh, Y.-K.: Advantages of deep learning with convolutional neural network in detecting disc displacement of the temporomandibular joint in magnetic resonance imaging. Sci. Rep. 12(1), 11352 (2022)
Mijwil, M.M.: Implementation of machine learning techniques for the classification of lung x-ray images used to detect covid-19 in humans. Iraqi J. Sci. 2099–2109 (2021)
Rong, Y., et al.: Towards human-centered explainable AI: user studies for model explanations. arXiv preprint arXiv:2210.11584 (2022)
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)
Seo, H., Hwang, J.J., Jeong, T., Shin, J.: Comparison of deep learning models for cervical vertebral maturation stage classification on lateral cephalometric radiographs. J. Clin. Med. 10(16), 3591 (2021)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Steiner, A., Kolesnikov, A., Zhai, X., Wightman, R., Uszkoreit, J., Beyer, L.: How to train your vit? data, augmentation, and regularization in vision transformers. arXiv preprint arXiv:2106.10270 (2021)
Sun, S., Woerner, S., Maier, A., Koch, L.M., Baumgartner, C.F.: Inherently interpretable multi-label classification using class-specific counterfactuals. arXiv preprint arXiv:2303.00500 (2023)
Tian, Y., Wang, J., Yang, W., Wang, J., Qian, D.: Deep multi-instance transfer learning for pneumothorax classification in chest x-ray images. Med. Phys. 49(1), 231–243 (2022)
Wollek, A., et al.: Attention-based saliency maps improve interpretability of pneumothorax classification. Radiol. Artif. Intell. 5(2), e220187 (2022)
Yuan, H., Jiang, P.-T., Zhao, G.: Human-guided design to explain deep learning-based pneumothorax classifier. In: Medical Imaging with Deep Learning, Short Paper Track (2023)
Zhou, D., et al.: Deepvit: towards deeper vision transformer. arXiv preprint arXiv:2103.11886 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Qiu, Z., Rivaz, H., Xiao, Y. (2024). Is Visual Explanation with Grad-CAM More Reliable for Deeper Neural Networks? A Case Study with Automatic Pneumothorax Diagnosis. In: Cao, X., Xu, X., Rekik, I., Cui, Z., Ouyang, X. (eds) Machine Learning in Medical Imaging. MLMI 2023. Lecture Notes in Computer Science, vol 14349. Springer, Cham. https://doi.org/10.1007/978-3-031-45676-3_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-45676-3_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-45675-6
Online ISBN: 978-3-031-45676-3
eBook Packages: Computer ScienceComputer Science (R0)