Skip to main content

A Bone Lesion Identification Network (BLIN) in CT Images with Weakly Supervised Learning

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14349))

Included in the following conference series:

  • 530 Accesses

Abstract

Malignant bone lesions often lead to poor prognosis if not detected and treated in time. It also influences the treatment plan for primary tumor. However, diagnosing these lesions can be challenging due to their subtle appearance resemblances to other pathological conditions. Precise segmentation can help identify lesion types but the regions of interest (ROIs) are often difficult to delineate, particularly for bone lesions. We propose a bone lesion identification network (BLIN) in whole body non-contrast CT scans based on weakly supervised learning through class activation map (CAM). In the algorithm, location of the focal box of each lesion is used to supervise network training through CAM. Compared with precise segmentation, focal boxes are relatively easy to be obtained either by manual annotation or automatic detection algorithms. Additionally, to deal with uneven distribution of training samples of different lesion types, a new sampling strategy is employed to reduce overfitting of the majority classes. Instead of using complicated network structures such as grouping and ensemble for long-tailed data classification, we use a single-branch structure with CBAM attention to prove the effectiveness of the weakly supervised method. Experiments were carried out using bone lesion dataset, and the results showed that the proposed method outperformed the state-of-the-art algorithms for bone lesion classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 106, 249–259 (2018)

    Google Scholar 

  2. Byrd, J., Lipton, Z.: What is the effect of importance weighting in deep learning? In: International Conference on Machine Learning, pp. 872–881. PMLR (2019)

    Google Scholar 

  3. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  MATH  Google Scholar 

  4. Cui, Y., Jia, M., Lin, T.-Y., Song, Y., Belongie, S.: Class-balanced loss based on effective number of samples. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9268–9277 (2019)

    Google Scholar 

  5. Drummond, C., Holte, R.C., et al.: C4. 5, class imbalance, and cost sensitivity: why under-sampling beats over-sampling. In: Workshop on Learning from Imbalanced Datasets II, vol. 11, pp. 1–8 (2003)

    Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  7. Huang, C., Li, Y., Change Loy, C., Tang, X.: Learning deep representation for imbalanced classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5375–5384 (2016)

    Google Scholar 

  8. Kendall, M.G., et al.: The advanced theory of statistics. vols. 1. The advanced theory of statistics, vols. 1, 1(Ed. 4) (1948)

    Google Scholar 

  9. Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  10. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  11. More, A.: Survey of resampling techniques for improving classification performance in unbalanced datasets. arXiv preprint arXiv:1608.06048 (2016)

  12. Ouyang, X., et al.: Dual-sampling attention network for diagnosis of Covid-19 from community acquired pneumonia. IEEE Trans. Med. Imaging 39(8), 2595–2605 (2020)

    Article  Google Scholar 

  13. Ren, M., Zeng, W., Yang, B., Urtasun, R.: Learning to reweight examples for robust deep learning. In: International Conference on Machine Learning, pp. 4334–4343. PMLR (2018)

    Google Scholar 

  14. Shen, L., Lin, Z., Huang, Q.: Relay backpropagation for effective learning of deep convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 467–482. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_29

    Chapter  Google Scholar 

  15. Tan, J., Lu, X., Zhang, G., Yin, C., Li, Q.: Equalization loss v2: a new gradient balance approach for long-tailed object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1685–1694 (2021)

    Google Scholar 

  16. Van Horn, G., Perona, P.: The devil is in the tails: fine-grained classification in the wild. arXiv preprint arXiv:1709.01450 (2017)

  17. Wang, Y.-X., Ramanan, D., Hebert, M.: Learning to model the tail. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  18. Wei, Y., Xiao, H., Shi, H., Jie, Z., Feng, J., Huang, T.S.: Revisiting dilated convolution: a simple approach for weakly-and semi-supervised semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7268–7277 (2018)

    Google Scholar 

  19. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  20. Xiang, L., Ding, G., Han, J.: Learning from multiple experts: self-paced knowledge distillation for long-tailed classification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 247–263. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_15

    Chapter  Google Scholar 

  21. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)

    Google Scholar 

  22. Zhou, B., Cui, Q., Wei, X.-S., Chen, Z.-M.: BBN: bilateral-branch network with cumulative learning for long-tailed visual recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9719–9728 (2020)

    Google Scholar 

  23. Zhou, Q., Zou, H., Wang, Z.: Long-tailed multi-label retinal diseases recognition via relational learning and knowledge distillation. In: Medical Image Computing and Computer Assisted Intervention-MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part II, pp. 709–718. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16434-7_68

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohuan Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deng, K., Wang, B., Ma, S., Xue, Z., Cao, X. (2024). A Bone Lesion Identification Network (BLIN) in CT Images with Weakly Supervised Learning. In: Cao, X., Xu, X., Rekik, I., Cui, Z., Ouyang, X. (eds) Machine Learning in Medical Imaging. MLMI 2023. Lecture Notes in Computer Science, vol 14349. Springer, Cham. https://doi.org/10.1007/978-3-031-45676-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45676-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45675-6

  • Online ISBN: 978-3-031-45676-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics