Skip to main content

CCMix: Curriculum of Class-Wise Mixup for Long-Tailed Medical Image Classification

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14349))

Included in the following conference series:

  • 606 Accesses

Abstract

Deep learning-based methods have been widely used for medical image classification. However, in clinical practice, rare diseases are usually underrepresented with limited labeled data, which result in long-tailed medical datasets and significantly degrade the performance of deep classification networks. Previous strategies employ re-sampling or re-weighting techniques to alleviate this issue by increasing the influence of underrepresented classes and reducing the influence of overrepresented ones. Still, poor performance may occur due to overfitting of the tail classes. Further, Mixup is employed to introduce additional information into model training. Despite considerable improvements, the significant noise in medical images means that random batch mixing may introduce ambiguity into training, thereby impair the performance. This observation motivates us to develop a fine-grained mixing approach. In this paper we present Curriculum of Class-wise Mixup (CCMix), a novel method for addressing the challenge of long-tailed distributions. CCMix leverages a novel curriculum that takes into account both the degree of mixing and the class-wise performance to identify the ideal Mixup proportions of different classes. Our method’s simplicity enables its effortless integration with existing long-tailed recognition techniques. Comprehensive experiments on two long-tailed medical image classification datasets demonstrate that our method, requiring no modifications to the framework structure or algorithmic details, achieves state-of-the-art results across diverse long-tailed classification benchmarks. The source code is available at https://github.com/sirileeee/CCMix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahn, S., Ko, J., Yun, S.Y.: CUDA: curriculum of data augmentation for long-tailed recognition. arXiv preprint arXiv:2302.05499 (2023)

  2. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  MATH  Google Scholar 

  3. Choi, H.K., Choi, J., Kim, H.J.: TokenMixup: efficient attention-guided token-level data augmentation for transformers. Adv. Neural. Inf. Process. Syst. 35, 14224–14235 (2022)

    Google Scholar 

  4. Chu, P., Bian, X., Liu, S., Ling, H.: Feature space augmentation for long-tailed data. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 694–710. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_41

    Chapter  Google Scholar 

  5. Codella, N., et al.: Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the international skin imaging collaboration (ISIC). arXiv preprint arXiv:1902.03368 (2019)

  6. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: RandAugment: practical automated data augmentation with a reduced search space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 702–703 (2020)

    Google Scholar 

  7. Cui, J., Liu, S., Tian, Z., Zhong, Z., Jia, J.: ResLT: residual learning for long-tailed recognition. IEEE Trans. Pattern Anal. Mach. Intell. 45(3), 3695–3706 (2022)

    Google Scholar 

  8. Cui, J., Zhong, Z., Liu, S., Yu, B., Jia, J.: Parametric contrastive learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 715–724 (2021)

    Google Scholar 

  9. Cui, J., Zhong, Z., Tian, Z., Liu, S., Yu, B., Jia, J.: Generalized parametric contrastive learning. IEEE Trans. Pattern Anal. Mach. Intell. (2023)

    Google Scholar 

  10. Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on effective number of samples. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9268–9277 (2019)

    Google Scholar 

  11. Estabrooks, A., Jo, T., Japkowicz, N.: A multiple resampling method for learning from imbalanced data sets. Comput. Intell. 20(1), 18–36 (2004)

    Article  MathSciNet  Google Scholar 

  12. Galdran, A., Carneiro, G., González Ballester, M.A.: Balanced-MixUp for highly imbalanced medical image classification. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 323–333. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_31

    Chapter  Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. Huang, C., Li, Y., Loy, C.C., Tang, X.: Learning deep representation for imbalanced classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5375–5384 (2016)

    Google Scholar 

  15. Huang, Y., Lin, L., Cheng, P., Lyu, J., Tam, R., Tang, X.: Identifying the key components in ResNet-50 for diabetic retinopathy grading from fundus images: a systematic investigation. Diagnostics 13(10) (2023). https://doi.org/10.3390/diagnostics13101664. https://www.mdpi.com/2075-4418/13/10/1664

  16. Kang, B., Li, Y., Xie, S., Yuan, Z., Feng, J.: Exploring balanced feature spaces for representation learning. In: International Conference on Learning Representations (2020)

    Google Scholar 

  17. Kang, B., et al.: Decoupling representation and classifier for long-tailed recognition. arXiv preprint arXiv:1910.09217 (2019)

  18. Karthick, M., Sohier, D.: APTOS 2019 blindness detection (2019). Kaggle https://kaggle.com/competitions/aptos2019-blindness-detection. Go to reference in chapter

  19. Kim, J.H., Choo, W., Jeong, H., Song, H.O.: Co-Mixup: saliency guided joint mixup with supermodular diversity. arXiv preprint arXiv:2102.03065 (2021)

  20. Li, Q., Cai, W., Wang, X., Zhou, Y., Feng, D.D., Chen, M.: Medical image classification with convolutional neural network. In: 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV), pp. 844–848. IEEE (2014)

    Google Scholar 

  21. Lin, L., et al.: BSDA-net: a boundary shape and distance aware joint learning framework for segmenting and classifying OCTA images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 65–75. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_7

    Chapter  Google Scholar 

  22. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  23. Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., Yu, S.X.: Large-scale long-tailed recognition in an open world. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2537–2546 (2019)

    Google Scholar 

  24. Ma, T., et al.: A simple long-tailed recognition baseline via vision-language model. arXiv preprint arXiv:2111.14745 (2021)

  25. Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C.: A survey on deep transfer learning. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11141, pp. 270–279. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01424-7_27

    Chapter  Google Scholar 

  26. Uddin, A., Monira, M., Shin, W., Chung, T., Bae, S.H., et al.: SaliencyMix: a saliency guided data augmentation strategy for better regularization. arXiv preprint arXiv:2006.01791 (2020)

  27. Verma, V., et al.: Manifold mixup: better representations by interpolating hidden states. In: International Conference on Machine Learning, pp. 6438–6447. PMLR (2019)

    Google Scholar 

  28. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: CutMix: regularization strategy to train strong classifiers with localizable features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6023–6032 (2019)

    Google Scholar 

  29. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

  30. Zhang, Z., Pfister, T.: Learning fast sample re-weighting without reward data. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 725–734 (2021)

    Google Scholar 

  31. Zhu, J., Wang, Z., Chen, J., Chen, Y.P.P., Jiang, Y.G.: Balanced contrastive learning for long-tailed visual recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6908–6917 (2022)

    Google Scholar 

Download references

Acknowledgement

This study was supported by the Shenzhen Basic Research Program (JCYJ20190809120205578); the National Natural Science Foundation of China (62071210); the Shenzhen Science and Technology Program (RCYX20210609103056042); the Shenzhen Basic Research Program (JCYJ20200925153847004); the Shenzhen Science and Technology Innovation Committee (KCXFZ2020122117340001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoying Tang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 119 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, S. et al. (2024). CCMix: Curriculum of Class-Wise Mixup for Long-Tailed Medical Image Classification. In: Cao, X., Xu, X., Rekik, I., Cui, Z., Ouyang, X. (eds) Machine Learning in Medical Imaging. MLMI 2023. Lecture Notes in Computer Science, vol 14349. Springer, Cham. https://doi.org/10.1007/978-3-031-45676-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45676-3_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45675-6

  • Online ISBN: 978-3-031-45676-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics