Skip to main content

Normative Aging for an Individual’s Full Brain MRI Using Style GANs to Detect Localized Neurodegeneration

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2023)

Abstract

In older adults, changes in brain structure can be used to identify and predict the risk of neurodegenerative disorders and dementias. Traditional ‘brainAge’ methods seek to identify differences between chronological age and biological brain age predicted from MRI that can indicate deviations from normative aging trajectories. These methods provide one metric for the entire brain and lack anatomical specificity and interpretability. By predicting an individual’s healthy brain at a specific age, one may be able to identify regional deviations and abnormalities in a true brain scan relative to healthy aging. This study aims to address the problem of domain transfer in estimating age-related brain differences. We develop a fully unsupervised generative adversarial network (GAN) with cycle consistency reconstruction losses, trained on 4,000 cross-sectional brain MRI data from UK Biobank participants aged 60 to 80. By converting the individual anatomic information from their T1-weighted MRI as “content” and adding the “style” information related to age and sex from a reference group, we demonstrate that brain MRIs for healthy males and females at any given age can be predicted from one cross-sectional scan. Paired with a full brain T1w harmonization method, this new MRI can also be generated for any image from any scanner. Results in the ADNI cohort showed that without relying on longitudinal data from the participants, our style-encoding domain transfer model might successfully predict cognitively normal follow-up brain MRIs. We demonstrate how variations from the expected structure are a sign of a potential risk for neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fjell, A.M., Walhovd, K.B.: Structural brain changes in aging: courses, causes and cognitive consequences. Rev. Neurosci. 21(3), 187–222 (2010)

    Article  Google Scholar 

  2. Rabinovici, G.D.: Late-onset Alzheimer disease. CONTINUUM: Lifelong Learn. Neurol. 25(1), 14–33 (2019)

    Google Scholar 

  3. Cole, J.H., Franke, K.: Predicting age using neuroimaging: innovative brain ageing biomarkers. Trends Neurosci. 40(12), 681–690 (2017)

    Article  Google Scholar 

  4. Yin, C., et al.: Anatomically interpretable deep learning of brain age captures domain-specific cognitive impairment. In: Proceedings of the National Academy of Sciences 120, no. 2, e2214634120 (2023)

    Google Scholar 

  5. Butler, E.R., et al. Pitfalls in brain age analyses, vol. 42, no. 13. Hoboken, USA: John Wiley & Sons, Inc. (2021)

    Google Scholar 

  6. Rachmadi, M.F., Valdés-Hernández, M.C., Makin, S., Wardlaw, J., Komura, T.: Automatic spatial estimation of white matter hyperintensities evolution in brain MRI using disease evolution predictor deep neural networks. Medical image analysis 63, 101712 (2020)

    Google Scholar 

  7. Rachmadi, M.F., Valdés-Hernández, M.C., Makin, S., Wardlaw, J.M., Komura, T.: Predicting the evolution of white matter Hyperintensities in brain MRI using generative adversarial networks and irregularity map. In: Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.-T., Khan, A. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 146–154. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_17

    Chapter  Google Scholar 

  8. Ravi, D., Alexander, D.C., Oxtoby, N.P.: Degenerative adversarial neuroimage nets: generating images that mimic disease progression. In: Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.-T., Khan, A. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 164–172. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_19

    Chapter  Google Scholar 

  9. Huang, X., Liu, M.-Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 172–189 (2018)

    Google Scholar 

  10. Choi, Y., Uh, Y., Yoo, J., Ha, J.-W.: Stargan v2: diverse image synthesis for multiple domains. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8188–8197 (2020)

    Google Scholar 

  11. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)

    Google Scholar 

  12. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1501–1510 (2017)

    Google Scholar 

  13. Zhao, F., et al.: Harmonization of infant cortical thickness using surface-to-surface cycle-consistent adversarial networks. In: Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.-T., Khan, A. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part IV, pp. 475–483. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_52

    Chapter  Google Scholar 

  14. Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018)

    Google Scholar 

  15. Liu, M., et al.: Style transfer generative adversarial networks to harmonize multi-site MRI to a single reference image to avoid over-correction. bioRxiv (2022)

    Google Scholar 

  16. Miller, K.L.: Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nature Neuroscience 19(11), 1523–1536 (2016)

    Google Scholar 

  17. Isensee, F., et al.: Automated brain extraction of multisequence MRI using artificial neural networks. Hum. Brain Mapp. 40(17), 4952–4964 (2019). https://doi.org/10.1002/hbm.24750

    Article  Google Scholar 

  18. Jenkinson, M., Bannister, P., Brady, M., Smith, S.: Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2), 825–841 (2002)

    Article  Google Scholar 

  19. Mueller, S.G., et al.: Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimer’s Dement 1(1), 55–66 (2005)

    Article  Google Scholar 

  20. Thyreau, B., Sato, K., Fukuda, H., Taki, Y.: Segmentation of the hippocampus by transferring algorithmic knowledge for large cohort processing. Med. Image Anal. 43, 214–228 (2018)

    Article  Google Scholar 

  21. Avants, B.B., Tustison, N., Song, G.: Advanced normalization tools (ANTS). Insight J 2(365), 1–35 (2009)

    Google Scholar 

  22. Kwon, G., Han, C., Kim, D.-S.: Generation of 3D brain MRI using auto-encoding generative adversarial networks. In: Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.-T., Khan, A. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part III, pp. 118–126. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_14

    Chapter  Google Scholar 

  23. Xia, T, Chartsias, A., Wang, C., Tsaftaris, S.A., Alzheimer’s Disease Neuroimaging Initiative: Learning to synthesise the ageing brain without longitudinal data. Med. Image Anal. 73, 102169 (2021)

    Google Scholar 

  24. Dey, N., Ren, M., Dalca, A.V., Gerig, G.: Generative adversarial registration for improved conditional deformable templates. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3929–3941 (2021)

    Google Scholar 

  25. Zhu, A.H., Thompson, P.M., Jahanshad, N.: Age-related heterochronicity of brain morphometry may bias voxelwise findings. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 836–839. IEEE (2021)

    Google Scholar 

  26. Fonov, V., Evans, A.C., Kelly Botteron, C., Almli, R., McKinstry, R.C., Louis Collins, D.: Unbiased average age-appropriate atlases for pediatric studies. Neuroimage 54(1), 313–327 (2011). https://doi.org/10.1016/j.neuroimage.2010.07.033

    Article  Google Scholar 

  27. Brouwer, R.M., et al.: Genetic variants associated with longitudinal changes in brain structure across the lifespan. Nat. Neurosci. 25(4), 421–432 (2022)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by: R01AG059874, RF1AG057892, R01AG058854, P41EB015922, U01AG068057. This research has been conducted using the UK Biobank Resource under Application Number ‘11559’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shruti P. Gadewar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gadewar, S.P. et al. (2024). Normative Aging for an Individual’s Full Brain MRI Using Style GANs to Detect Localized Neurodegeneration. In: Cao, X., Xu, X., Rekik, I., Cui, Z., Ouyang, X. (eds) Machine Learning in Medical Imaging. MLMI 2023. Lecture Notes in Computer Science, vol 14349. Springer, Cham. https://doi.org/10.1007/978-3-031-45676-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45676-3_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45675-6

  • Online ISBN: 978-3-031-45676-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics