Skip to main content

Identifying Alzheimer’s Disease-Induced Topology Alterations in Structural Networks Using Convolutional Neural Networks

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14349))

Included in the following conference series:

  • 554 Accesses

Abstract

Identifying topology alterations in white matter connectivity has emerged as a promising avenue for exploring potential markers of Alzheimer’s disease (AD). However, conventional graph learning methods struggle to accurately represent the subtle and heterogeneous topology alterations caused by AD, leading to marginal classification accuracy. In this study, we address this issue through a two-fold approach. Firstly, to more reliably capture AD-induced alterations, we collect multi-shell high-angular resolution diffusion MRI data and construct a topology tensor to incorporate multiple edge-based attributes. Secondly, we propose a novel CNN framework called REST-Net, utilizing lightweight convolutional kernels to integrate the multiple attributes, enhancing its capacity for topology representation. With extensive experiments, REST-Net outperforms seven state-of-the-art graph learning methods for binary and tertiary classification tasks. Of utmost importance, the white matter connections identified by REST-Net guide the selection of target bundles for further analysis, which can potentially provide valuable insights for clinical and pharmacological investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

  2. Arenaza-Urquijo, E.M., Vemuri, P.: Resistance vs resilience to Alzheimer disease: clarifying terminology for preclinical studies. Neurology 90(15), 695–703 (2018)

    Article  Google Scholar 

  3. Bessadok, A., Mahjoub, M.A., Rekik, I.: Graph neural networks in network neuroscience. TPAMI (2022)

    Google Scholar 

  4. Catani, M., Ffytche, D.H.: The rises and falls of disconnection syndromes. Brain 128(10), 2224–2239 (2005)

    Article  Google Scholar 

  5. Chen, H., Koga, H.: GL2vec: graph embedding enriched by line graphs with edge features. In: Gedeon, T., Wong, K.W., Lee, M. (eds.) ICONIP 2019. LNCS, vol. 11955, pp. 3–14. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36718-3_1

    Chapter  Google Scholar 

  6. De Strooper, B., Karran, E.: The cellular phase of Alzheimer’s disease. Cell 164(4), 603–615 (2016)

    Article  Google Scholar 

  7. Jenkinson, M., et al.: FSL. NeuroImage 62(2), 782–790 (2012)

    Google Scholar 

  8. Jeurissen, B., et al.: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. Neuroimage 103, 411–426 (2014)

    Article  Google Scholar 

  9. Jonkman, L.E., et al.: Relationship between \(\beta \)-amyloid and structural network topology in decedents without dementia. Neurology 95(5), e532–e544 (2020)

    Article  Google Scholar 

  10. Kawahara, J., et al.: BrainNetCNN: convolutional neural networks for brain networks; towards predicting neurodevelopment. Neuroimage 146, 1038–1049 (2017)

    Article  Google Scholar 

  11. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  12. Klein, A., Tourville, J.: 101 labeled brain images and a consistent human cortical labeling protocol. Front. Neurosci. 6(171), 1–12 (2012)

    Google Scholar 

  13. Narayanan, A., et al.: Graph2vec: learning distributed representations of graphs. arXiv preprint arXiv:1707.05005 (2017)

  14. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Platt, J., et al.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv. Large Margin Classif. 10(3), 61–74 (1999)

    Google Scholar 

  16. Reid, A.T., Evans, A.C.: Structural networks in Alzheimer’s disease. Eur. Neuropsychopharmacol. 23(1), 63–77 (2013)

    Article  Google Scholar 

  17. Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3), 1059–1069 (2010)

    Article  Google Scholar 

  18. Schult, D.A.: Exploring network structure, dynamics, and function using NetworkX. In: Proceedings of SciPy (2008)

    Google Scholar 

  19. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of ICCV, pp. 618–626 (2017)

    Google Scholar 

  20. Smith, R.E., et al.: Sift2: enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography. Neuroimage 119, 338–351 (2015)

    Article  Google Scholar 

  21. Taylor, N.L., Shine, J.M.: A whole new world: embracing the systems-level to understand the indirect impact of pathology in neurodegenerative disorders. J. Neurol. 270(4), 1969–1975 (2023)

    Article  Google Scholar 

  22. Tournier, J.D., et al.: Improved probabilistic streamlines tractography by 2nd order integration over fibre orientation distributions. In: Proceedings of the International Society for Magnetic Resonance in Medicine, vol. 1670 (2010)

    Google Scholar 

  23. Tournier, J.D., et al.: MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation. Neuroimage 202, 116137 (2019)

    Article  Google Scholar 

  24. Tustison, N.J., et al.: N4ITK: Improved N3 bias correction. TMI 29(6), 1310–1320 (2010)

    Google Scholar 

  25. Xiao, B., et al.: Weakly supervised confidence learning for brain MR image dense parcellation. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 409–416. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_47

    Chapter  Google Scholar 

  26. Xu, K., et al.: How powerful are graph neural networks? In: Proceedings of ICLR (2018)

    Google Scholar 

  27. Yang, Z., et al.: A deep learning framework identifies dimensional representations of Alzheimer’s Disease from brain structure. Nat. Commun. 12, 7065 (2021)

    Google Scholar 

  28. Yu, M., et al.: The human connectome in Alzheimer disease-relationship to biomarkers and genetics. Nat. Rev. Neurol. 17(9), 545–563 (2021)

    Article  Google Scholar 

  29. Zhang, X., et al.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of CVPR, pp. 6848–6856 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (No. 62203355, 62131015, 62073260, 12271434), Science and Technology Commission of Shanghai Municipality (STCSM) (No. 21010502600), and Shanghai Pujiang Program (No. 21PJ1421400).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Feng , Qihao Guo or Dinggang Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, F. et al. (2024). Identifying Alzheimer’s Disease-Induced Topology Alterations in Structural Networks Using Convolutional Neural Networks. In: Cao, X., Xu, X., Rekik, I., Cui, Z., Ouyang, X. (eds) Machine Learning in Medical Imaging. MLMI 2023. Lecture Notes in Computer Science, vol 14349. Springer, Cham. https://doi.org/10.1007/978-3-031-45676-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45676-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45675-6

  • Online ISBN: 978-3-031-45676-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics