Skip to main content

Enhanced Diagnostic Fidelity in Pathology Whole Slide Image Compression via Deep Learning

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2023)

Abstract

Accurate diagnosis of disease often depends on the exhaustive examination of Whole Slide Images (WSI) at microscopic resolution. Efficient handling of these data-intensive images requires lossy compression techniques. This paper investigates the limitations of the widely-used JPEG algorithm, the current clinical standard, and reveals severe image artifacts impacting diagnostic fidelity.

To overcome these challenges, we introduce a novel deep-learning (DL)-based compression method tailored for pathology images. By enforcing feature similarity of deep features between the original and compressed images, our approach achieves superior Peak Signal-to-Noise Ratio (PSNR), Multi-Scale Structural Similarity Index (MS-SSIM), and Learned Perceptual Image Patch Similarity (LPIPS) scores compared to JPEG-XL, Webp, and other DL compression methods. Our method increases the PSNR value from 39 (JPEG80) to 41, indicating improved image fidelity and diagnostic accuracy.

Our approach can help to drastically reduce storage costs while maintaining large levels of image quality. Our method is online available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ballé, J., Minnen, D., Singh, S., Hwang, S.J., Johnston, N.: Variational image compression with a scale hyperprior. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=rkcQFMZRb

  2. Bégaint, J., Racapé, F., Feltman, S., Pushparaja, A.: CompressAI: a PyTorch library and evaluation platform for end-to-end compression research. arXiv preprint arXiv:2011.03029 (2020)

  3. Borkowski, A.A., Bui, M.M., Thomas, L.B., Wilson, C.P., DeLand, L.A., Mastorides, S.M.: Lung and colon cancer histopathological image dataset (lc25000) (2019). https://doi.org/10.48550/ARXIV.1912.12142. https://www.kaggle.com/datasets/andrewmvd/lung-and-colon-cancer-histopathological-images

  4. Chen, Y., Janowczyk, A., Madabhushi, A.: Quantitative assessment of the effects of compression on deep learning in digital pathology image analysis. JCO Clin. Cancer Inf. 4, 221–233 (2020). https://doi.org/10.1200/CCI.19.00068

    Article  Google Scholar 

  5. Ciga, O., Xu, T., Martel, A.L.: Self supervised contrastive learning for digital histopathology. Mach. Learn. Appl. 7, 100198 (2022). https://doi.org/10.1016/j.mlwa.2021.100198

    Article  Google Scholar 

  6. Cover, T.M., Thomas, J.A.: Elements of information theory (2012)

    Google Scholar 

  7. Ghazvinian Zanjani, F., Zinger, S., Piepers, B., Mahmoudpour, S., Schelkens, P.: Impact of JPEG 2000 compression on deep convolutional neural networks for metastatic cancer detection in histopathological images. J. Med. Imaging 6(2), 1 (2019). https://doi.org/10.1117/1.JMI.6.2.027501

    Article  Google Scholar 

  8. Ghouse, N.F.K.M., Petersen, J., Wiggers, A.J., Xu, T., Sautiere, G.: Neural image compression with a diffusion-based decoder (2023). https://openreview.net/forum?id=4Jq0XWCZQel

  9. Kather, J.N., et al.: Multi-class texture analysis in colorectal cancer histology. Sci. Rep. 6, 27988 (2016). https://doi.org/10.1038/srep27988. https://www.kaggle.com/datasets/kmader/colorectal-histology-mnist

  10. Mentzer, F., Toderici, G.D., Tschannen, M., Agustsson, E.: High-fidelity generative image compression. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 11913–11924. Curran Associates, Inc. (2020)

    Google Scholar 

  11. Pan, Z., Zhou, X., Tian, H.: Extreme generative image compression by learning text embedding from diffusion models. ArXiv abs/2211.07793 (2022)

    Google Scholar 

  12. Rippel, O., Anderson, A.G., Tatwawadi, K., Nair, S., Lytle, C., Bourdev, L.D.: ELF-VC: efficient learned flexible-rate video coding. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14459–14468 (2021)

    Google Scholar 

  13. Russakovsky, O., Deng, J., Su, H., et al.: ImageNet large scale visual recognition challenge (2015). http://arxiv.org/abs/1409.0575

  14. Song, M.S., Choi, J., Han, B.: Variable-rate deep image compression through spatially-adaptive feature transform. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 2360–2369 (2021)

    Google Scholar 

  15. Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.: A dataset for breast cancer histopathological image classification. IEEE Trans. Biomed. Eng. 63(7), 1455–1462 (2016). https://doi.org/10.1109/TBME.2015.2496264

    Article  Google Scholar 

  16. Theis, L., Shi, W., Cunningham, A., Huszár, F.: Lossy image compression with compressive autoencoders. In: International Conference on Learning Representations (2017). https://openreview.net/forum?id=rJiNwv9gg

  17. Wang, Z., Simoncelli, E., Bovik, A.: Multiscale structural similarity for image quality assessment, vol. 2, pp. 1398–1402 (2003). https://doi.org/10.1109/ACSSC.2003.1292216

  18. Wu, L., Huang, K., Shen, H.: A GAN-based tunable image compression system. In: 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 2323–2331 (2020)

    Google Scholar 

  19. Xue, T., Chen, B., Wu, J., Wei, D., Freeman, W.T.: Video enhancement with task-oriented flow. Int. J. Comput. Vis. (IJCV) 127(8), 1106–1125 (2019)

    Article  Google Scholar 

  20. Yang, R., Mandt, S.: Lossy image compression with conditional diffusion models. arXiv preprint arXiv:2209.06950 (2022)

  21. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the DKTK Joint Funding UPGRADE, project “Subtyping of pancreatic cancer based on radiographic and pathological features” (SUBPAN), and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under the grant 410981386.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Fischer .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1369 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fischer, M. et al. (2024). Enhanced Diagnostic Fidelity in Pathology Whole Slide Image Compression via Deep Learning. In: Cao, X., Xu, X., Rekik, I., Cui, Z., Ouyang, X. (eds) Machine Learning in Medical Imaging. MLMI 2023. Lecture Notes in Computer Science, vol 14349. Springer, Cham. https://doi.org/10.1007/978-3-031-45676-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45676-3_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45675-6

  • Online ISBN: 978-3-031-45676-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics