Skip to main content

Specificity-Aware Federated Graph Learning for Brain Disorder Analysis with Functional MRI

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14349))

Included in the following conference series:

  • 1044 Accesses

Abstract

Resting-state functional magnetic resonance imaging (rs-fMRI) provides a non-invasive solution to explore abnormal brain connectivity patterns caused by brain disorders. Graph neural network (GNN) has been widely used for fMRI representation learning and brain disorder analysis, thanks to its potent graph representation abilities. Training a generalizable GNN model often requires large-scale subjects from different medical centers/sites, but the traditional centralized utilization of multi-site data unavoidably encounters challenges related to data privacy and storage. Federated learning (FL) can coordinate multiple sites to train a shared model without centrally integrating multi-site fMRI data. However, previous FL-based methods for fMRI analysis usually ignore specificity of each site, including factors such as age, gender, and population. To this end, we propose a specificity-aware federated graph learning (SFGL) framework for fMRI-based brain disorder diagnosis. The proposed SFGL consists of a shared branch and a personalized branch, where the parameters of the shared branch are sent to a server and the parameters of the personalized branch remain in each local site. In the shared branch, we employ a graph isomorphism network and a Transformer to learn dynamic representations from fMRI data. In the personalized branch, vectorized representations of demographic information (i.e., gender, age, and education) and functional connectivity network are integrated to capture specificity of each site. We aggregate representations learned by shared branches and personalized branches for classification. Experimental results on two fMRI datasets with a total of 1, 218 subjects demonstrate that SFGL outperforms several state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khosla, M., Jamison, K., Ngo, G.H., Kuceyeski, A., Sabuncu, M.R.: Machine learning in resting-state fMRI analysis. Magn. Reson. Imaging 64, 101–121 (2019)

    Article  Google Scholar 

  2. Saeidi, M., et al.: Decoding task-based fMRI data with graph neural networks, considering individual differences. Brain Sci. 12(8), 1094 (2022)

    Article  Google Scholar 

  3. ElGazzar, A., Thomas, R., Van Wingen, G.: Benchmarking graph neural networks for fMRI analysis. arXiv preprint arXiv:2211.08927 (2022)

  4. Jiang, H., Cao, P., Xu, M., Yang, J., Zaiane, O.: Hi-GCN: a hierarchical graph convolution network for graph embedding learning of brain network and brain disorders prediction. Comput. Biol. Med. 127, 104096 (2020)

    Article  Google Scholar 

  5. Gadgil, S., Zhao, Q., Pfefferbaum, A., Sullivan, E.V., Adeli, E., Pohl, K.M.: Spatio-temporal graph convolution for resting-state fMRI analysis. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 528–538. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_52

    Chapter  Google Scholar 

  6. Fang, Y., Wang, M., Potter, G.G., Liu, M.: Unsupervised cross-domain functional MRI adaptation for automated major depressive disorder identification. Med. Image Anal. 84, 102707 (2023)

    Article  Google Scholar 

  7. Yao, D., Sui, J., Wang, M., Yang, E., Jiaerken, Y., Luo, N., Yap, P.T., Liu, M., Shen, D.: A mutual multi-scale triplet graph convolutional network for classification of brain disorders using functional or structural connectivity. IEEE Trans. Med. Imaging 40(4), 1279–1289 (2021)

    Article  Google Scholar 

  8. Wang, M., Huang, J., Liu, M., Zhang, D.: Modeling dynamic characteristics of brain functional connectivity networks using resting-state functional mri. Med. Image Anal. 71, 102063 (2021)

    Article  Google Scholar 

  9. Neyshabur, B., Bhojanapalli, S., McAllester, D., Srebro, N.: Exploring generalization in deep learning. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  10. Lian, C., Liu, M., Pan, Y., Shen, D.: Attention-guided hybrid network for dementia diagnosis with structural MR images. IEEE Trans. Cybern. 52(4), 1992–2003 (2020)

    Article  Google Scholar 

  11. Goddard, M.: The EU general data protection regulation (GDPR): European regulation that has a global impact. Int. J. Mark. Res. 59(6), 703–705 (2017)

    Article  Google Scholar 

  12. Act, A.: Health insurance portability and accountability act of 1996. Public Law 104, 191 (1996)

    Google Scholar 

  13. Guan, H., Liu, M.: Domain adaptation for medical image analysis: a survey. IEEE Trans. Biomed. Eng. 69(3), 1173–1185 (2021)

    Article  Google Scholar 

  14. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, PMLR, pp. 1273–1282 (2017)

    Google Scholar 

  15. Pillutla, K., Malik, K., Mohamed, A.R., Rabbat, M., Sanjabi, M., Xiao, L.: Federated learning with partial model personalization. In: International Conference on Machine Learning, PMLR, pp. 17716–17758 (2022)

    Google Scholar 

  16. Li, X.C., et al.: Federated learning with position-aware neurons. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10082–10091 (2022)

    Google Scholar 

  17. Li, X., Gu, Y., Dvornek, N., Staib, L.H., Ventola, P., Duncan, J.S.: Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: Abide results. Med. Image Anal. 65, 101765 (2020)

    Article  Google Scholar 

  18. Kim, B.H., Ye, J.C., Kim, J.J.: Learning dynamic graph representation of brain connectome with spatio-temporal attention. Adv. Neural. Inf. Process. Syst. 34, 4314–4327 (2021)

    Google Scholar 

  19. Di Martino, A., et al.: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19(6), 659–667 (2014)

    Article  Google Scholar 

  20. Yan, C.G., et al.: Reduced default mode network functional connectivity in patients with recurrent major depressive disorder. Proc. Natl. Acad. Sci. 116(18), 9078–9083 (2019)

    Article  Google Scholar 

  21. Yan, C., Zang, Y.: DPARSF: a MATLAB toolbox for “pipeline" data analysis of resting-state fMRI. Front. Syst. Neurosci. 13 (2010)

    Google Scholar 

  22. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. Proc. Mach. Learn. Syst. 2, 429–450 (2020)

    Google Scholar 

  23. Li, Q., He, B., Song, D.: Model-contrastive federated learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10713–10722 (2021)

    Google Scholar 

  24. T Dinh, C., Tran, N., Nguyen, J.: Personalized federated learning with moreau envelopes. In: Advances in Neural Information Processing Systems 33, pp. 21394–21405 (2020)

    Google Scholar 

  25. Liang, P.P., et al.: Think locally, act globally: federated learning with local and global representations. arXiv preprint arXiv:2001.01523 (2020)

  26. Velickovic, P., et al.: Graph attention networks. Stat. 1050(20), 10–48550 (2017)

    Google Scholar 

  27. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  28. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 (2018)

  29. Liu, M., Zhang, D., Shen, D.: Relationship induced multi-template learning for diagnosis of Alzheimer’s disease and mild cognitive impairment. IEEE Trans. Med. Imaging 35(6), 1463–1474 (2016)

    Article  Google Scholar 

Download references

Acknowledgment

L. Qiao was supported in part by National Natural Science Foundation of China (Nos. 61976110, 62176112, 11931008) and Natural Science Foundation of Shandong Province (No. ZR202102270451).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lishan Qiao or Mingxia Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Wang, X., Wang, Q., Qiao, L., Liu, M. (2024). Specificity-Aware Federated Graph Learning for Brain Disorder Analysis with Functional MRI. In: Cao, X., Xu, X., Rekik, I., Cui, Z., Ouyang, X. (eds) Machine Learning in Medical Imaging. MLMI 2023. Lecture Notes in Computer Science, vol 14349. Springer, Cham. https://doi.org/10.1007/978-3-031-45676-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45676-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45675-6

  • Online ISBN: 978-3-031-45676-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics