Skip to main content

Consisaug: A Consistency-Based Augmentation for Polyp Detection in Endoscopy Image Analysis

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14349))

Included in the following conference series:

  • 1000 Accesses

Abstract

Colorectal cancer (CRC), which frequently originates from initially benign polyps, remains a significant contributor to global cancer-related mortality. Early and accurate detection of these polyps via colono-scopy is crucial for CRC prevention. However, traditional colonoscopy methods depend heavily on the operator’s experience, leading to suboptimal polyp detection rates. Besides, the public database are limited in polyp size and shape diversity. To enhance the available data for polyp detection, we introduce Consisaug, an innovative and effective methodology to augment data that leverages deep learning. We utilize the constraint that when the image is flipped the class label should be equal and the bonding boxes should be consistent. We implement our Consisaug on five public polyp datasets and at three backbones, and the results show the effectiveness of our method. All the codes are available at (https://github.com/Zhouziyuya/Consisaug).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhao, S.: Magnitude, risk factors, and factors associated with adenoma miss rate of tandem colonoscopy: a systematic review and meta-analysis. Gastroenterology 156(6), 1661–1674 (2019)

    Article  Google Scholar 

  2. Wadhwa, V., et al.: Physician sentiment toward artificial intelligence (AI) in colonoscopic practice: a survey of us gastroenterologists. Endosc. Int. Open 8(10, E1379–E1384 (2020)

    Google Scholar 

  3. Dayyeh, B.K.A., et al.: ASGE technology committee systematic review and meta-analysis assessing the ASGE PIVI thresholds for adopting real-time endoscopic assessment of the histology of diminutive colorectal polyps. Gastrointest. Endosc. 81(3), 502–e1 (2015)

    Google Scholar 

  4. Russakovsky, O., Li, L.-J., Fei-Fei, L.: Best of both worlds: human-machine collaboration for object annotation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2121–2131 (2015)

    Google Scholar 

  5. Tomar, N.K., Shergill, A., Rieders, B., Bagci, U., Jha, D.: Transresu-net: transformer based resu-net for real-time colonoscopy polyp segmentation. arXiv preprint arXiv:2206.08985 (2022)

  6. Fan, D.-P., et al.: PraNet: parallel reverse attention network for polyp segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 263–273. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_26

    Chapter  Google Scholar 

  7. Sun, X., et al.: MAF-net: multi-branch anchor-free detector for polyp localization and classification in colonoscopy. In: International Conference on Medical Imaging with Deep Learning, pp. 1162–1172. PMLR (2022)

    Google Scholar 

  8. Jiang, Y., Zhang, Z., Zhang, R., Li, G., Cui, S., Li, Z.: Yona: you only need one adjacent reference-frame for accurate and fast video polyp detection. arXiv preprint arXiv:2306.03686 (2023)

  9. Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., Vilariño, F.: WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians. Comput. Med. Imaging Graph. 43, 99–111 (2015)

    Google Scholar 

  10. Silva, J., Histace, A., Romain, O., Dray, X., Granado, B.: Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer. Int. J. Comput. Assist. Radiol. Surg. 9, 283–293 (2014)

    Article  Google Scholar 

  11. Bernal, J., Sánchez, J., Vilarino, F.: Towards automatic polyp detection with a polyp appearance model. Pattern Recogn. 45(9), 3166–3182 (2012)

    Article  Google Scholar 

  12. Borgli, H., et al.: Hyperkvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy. Sci. Data 7(1), 283 (2020)

    Google Scholar 

  13. Ma, Y., Chen, X., Cheng, K., Li, Y., Sun, B.: LDPolypVideo benchmark: a large-scale colonoscopy video dataset of diverse polyps. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 387–396. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_37

    Chapter  Google Scholar 

  14. Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. arXiv preprint arXiv:1610.02242 (2016)

  15. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  16. Miyato, T., Maeda, S., Koyama, M., Ishii, S.: Virtual adversarial training: a regularization method for supervised and semi-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 1979–1993 (2018)

    Article  Google Scholar 

  17. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  18. Xie, Q., Luong, M.-T., Hovy, E., Le, Q.V.: Self-training with noisy student improves imagenet classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10687–10698 (2020)

    Google Scholar 

  19. Jocher, G., et al.: ultralytics/yolov5: v7. 0-yolov5 sota realtime instance segmentation. Zenodo (2022)

    Google Scholar 

  20. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  21. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  22. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, Z., Shen, W., Liu, C. (2024). Consisaug: A Consistency-Based Augmentation for Polyp Detection in Endoscopy Image Analysis. In: Cao, X., Xu, X., Rekik, I., Cui, Z., Ouyang, X. (eds) Machine Learning in Medical Imaging. MLMI 2023. Lecture Notes in Computer Science, vol 14349. Springer, Cham. https://doi.org/10.1007/978-3-031-45676-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45676-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45675-6

  • Online ISBN: 978-3-031-45676-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics