Abstract
Colorectal cancer (CRC), which frequently originates from initially benign polyps, remains a significant contributor to global cancer-related mortality. Early and accurate detection of these polyps via colono-scopy is crucial for CRC prevention. However, traditional colonoscopy methods depend heavily on the operator’s experience, leading to suboptimal polyp detection rates. Besides, the public database are limited in polyp size and shape diversity. To enhance the available data for polyp detection, we introduce Consisaug, an innovative and effective methodology to augment data that leverages deep learning. We utilize the constraint that when the image is flipped the class label should be equal and the bonding boxes should be consistent. We implement our Consisaug on five public polyp datasets and at three backbones, and the results show the effectiveness of our method. All the codes are available at (https://github.com/Zhouziyuya/Consisaug).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Zhao, S.: Magnitude, risk factors, and factors associated with adenoma miss rate of tandem colonoscopy: a systematic review and meta-analysis. Gastroenterology 156(6), 1661–1674 (2019)
Wadhwa, V., et al.: Physician sentiment toward artificial intelligence (AI) in colonoscopic practice: a survey of us gastroenterologists. Endosc. Int. Open 8(10, E1379–E1384 (2020)
Dayyeh, B.K.A., et al.: ASGE technology committee systematic review and meta-analysis assessing the ASGE PIVI thresholds for adopting real-time endoscopic assessment of the histology of diminutive colorectal polyps. Gastrointest. Endosc. 81(3), 502–e1 (2015)
Russakovsky, O., Li, L.-J., Fei-Fei, L.: Best of both worlds: human-machine collaboration for object annotation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2121–2131 (2015)
Tomar, N.K., Shergill, A., Rieders, B., Bagci, U., Jha, D.: Transresu-net: transformer based resu-net for real-time colonoscopy polyp segmentation. arXiv preprint arXiv:2206.08985 (2022)
Fan, D.-P., et al.: PraNet: parallel reverse attention network for polyp segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 263–273. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_26
Sun, X., et al.: MAF-net: multi-branch anchor-free detector for polyp localization and classification in colonoscopy. In: International Conference on Medical Imaging with Deep Learning, pp. 1162–1172. PMLR (2022)
Jiang, Y., Zhang, Z., Zhang, R., Li, G., Cui, S., Li, Z.: Yona: you only need one adjacent reference-frame for accurate and fast video polyp detection. arXiv preprint arXiv:2306.03686 (2023)
Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., Vilariño, F.: WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians. Comput. Med. Imaging Graph. 43, 99–111 (2015)
Silva, J., Histace, A., Romain, O., Dray, X., Granado, B.: Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer. Int. J. Comput. Assist. Radiol. Surg. 9, 283–293 (2014)
Bernal, J., Sánchez, J., Vilarino, F.: Towards automatic polyp detection with a polyp appearance model. Pattern Recogn. 45(9), 3166–3182 (2012)
Borgli, H., et al.: Hyperkvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy. Sci. Data 7(1), 283 (2020)
Ma, Y., Chen, X., Cheng, K., Li, Y., Sun, B.: LDPolypVideo benchmark: a large-scale colonoscopy video dataset of diverse polyps. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 387–396. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_37
Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. arXiv preprint arXiv:1610.02242 (2016)
Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Miyato, T., Maeda, S., Koyama, M., Ishii, S.: Virtual adversarial training: a regularization method for supervised and semi-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 1979–1993 (2018)
Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)
Xie, Q., Luong, M.-T., Hovy, E., Le, Q.V.: Self-training with noisy student improves imagenet classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10687–10698 (2020)
Jocher, G., et al.: ultralytics/yolov5: v7. 0-yolov5 sota realtime instance segmentation. Zenodo (2022)
Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhou, Z., Shen, W., Liu, C. (2024). Consisaug: A Consistency-Based Augmentation for Polyp Detection in Endoscopy Image Analysis. In: Cao, X., Xu, X., Rekik, I., Cui, Z., Ouyang, X. (eds) Machine Learning in Medical Imaging. MLMI 2023. Lecture Notes in Computer Science, vol 14349. Springer, Cham. https://doi.org/10.1007/978-3-031-45676-3_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-45676-3_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-45675-6
Online ISBN: 978-3-031-45676-3
eBook Packages: Computer ScienceComputer Science (R0)