Skip to main content

Cross-view Contrastive Mutual Learning Across Masked Autoencoders for Mammography Diagnosis

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14349))

Included in the following conference series:

  • 614 Accesses

Abstract

Mammography is a widely used screening tool for breast cancer, and accurate diagnosis is critical for the effective management of breast cancer. In this study, we propose a novel cross-view mutual learning method that leverages a Cross-view Masked Autoencoder (CMAE) and a Dual-View Affinity Matrix (DAM) to extract cross-view features and facilitate malignancy classification in mammography. CMAE aims to extract the underlying features from multi-view mammography data without relying on lesion labeling information or multi-view registration. DAM helps overcome the limitations of single-view models and identifies unique patterns and features in each view, thereby improving the accuracy and robustness of breast tissue representations. We evaluate our approach on a large-scale in-house mammography dataset and demonstrate promising results compared to existing methods. Additionally, we perform an ablation analysis to investigate the influence of different loss functions on the performance of our method. The results show that all the proposed components contribute positively to the final performance. In summary, the proposed cross-view mutual learning method shows great potential for assisting malignant classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cao, Z., et al.: Supervised contrastive pre-training for mammographic triage screening models. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12907, pp. 129–139. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_13

    Chapter  Google Scholar 

  2. Carneiro, G., Nascimento, J., Bradley, A.P.: Automated analysis of unregistered multi-view mammograms with deep learning. IEEE Trans. Med. Imaging 36(11), 2355–2365 (2017)

    Article  Google Scholar 

  3. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  4. Chen, T., Kornblith, S., Swersky, K., Norouzi, M., Hinton, G.E.: Big self-supervised models are strong semi-supervised learners. Adv. Neural. Inf. Process. Syst. 33, 22243–22255 (2020)

    Google Scholar 

  5. Chen, Z., et al.: Multi-modal masked autoencoders for medical vision-and-language pre-training. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. LNCS, vol. 13435. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_65

  6. Giaquinto, A.N., et al.: Breast cancer statistics. CA: Cancer J. Clin. 72(6), 524–541 (2022)

    Google Scholar 

  7. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16000–16009 (2022)

    Google Scholar 

  8. Kyono, T., Gilbert, F.J., Schaar, M.: Multi-view multi-task learning for improving autonomous mammogram diagnosis. In: Machine Learning for Healthcare Conference, pp. 571–591. PMLR (2019)

    Google Scholar 

  9. Li, H., Chen, D., Nailon, W.H., Davies, M.E., Laurenson, D.I.: Dual convolutional neural networks for breast mass segmentation and diagnosis in mammography. IEEE Trans. Med. Imaging 41(1), 3–13 (2021)

    Article  Google Scholar 

  10. Li, Z., et al.: Domain generalization for mammography detection via multi-style and multi-view contrastive learning. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12907, pp. 98–108. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_10

    Chapter  Google Scholar 

  11. Liu, Y., Zhang, F., Chen, C., Wang, S., Wang, Y., Yu, Y.: Act like a radiologist: towards reliable multi-view correspondence reasoning for mammogram mass detection. IEEE Trans. Pattern Anal. Mach. Intell. 44(10), 5947–5961 (2021)

    Article  Google Scholar 

  12. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convNet for the 2020s. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11976–11986 (2022)

    Google Scholar 

  13. Lotter, W., et al.: Robust breast cancer detection in mammography and digital breast tomosynthesis using an annotation-efficient deep learning approach. Nat. Med. 27(2), 244–249 (2021)

    Article  Google Scholar 

  14. McKinney, S.M., et al.: International evaluation of an AI system for breast cancer screening. Nature 577(7788), 89–94 (2020)

    Article  Google Scholar 

  15. Salim, M., et al.: External evaluation of 3 commercial artificial intelligence algorithms for independent assessment of screening mammograms. JAMA Oncol. 6(10), 1581–1588 (2020)

    Article  Google Scholar 

  16. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  17. Tian, Y., Sun, C., Poole, B., Krishnan, D., Schmid, C., Isola, P.: What makes for good views for contrastive learning? Adv. Neural. Inf. Process. Syst. 33, 6827–6839 (2020)

    Google Scholar 

  18. Woo, S., et al.: ConvNeXt V2: co-designing and scaling convnets with masked autoencoders. arXiv preprint arXiv:2301.00808 (2023)

  19. Wu, N., et al.: Deep neural networks improve radiologists’ performance in breast cancer screening. IEEE Trans. Med. Imaging 39(4), 1184–1194 (2019)

    Article  Google Scholar 

  20. Xiao, J., Bai, Y., Yuille, A., Zhou, Z.: Delving into masked autoencoders for multi-label thorax disease classification. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3588–3600 (2023)

    Google Scholar 

  21. Yang, Z., et al.: MommiNet-v2: mammographic multi-view mass identification networks. Med. Image Anal. 73, 102204 (2021)

    Article  Google Scholar 

  22. You, K., Lee, S., Jo, K., Park, E., Kooi, T., Nam, H.: Intra-class contrastive learning improves computer aided diagnosis of breast cancer in mammography. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. LNCS, vol. 13433. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_6

  23. Zhou, L., Liu, H., Bae, J., He, J., Samaras, D., Prasanna, P.: Self pre-training with masked autoencoders for medical image analysis. arXiv preprint arXiv:2203.05573 (2022)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meiyun Wang or Zhong Xue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Q. et al. (2024). Cross-view Contrastive Mutual Learning Across Masked Autoencoders for Mammography Diagnosis. In: Cao, X., Xu, X., Rekik, I., Cui, Z., Ouyang, X. (eds) Machine Learning in Medical Imaging. MLMI 2023. Lecture Notes in Computer Science, vol 14349. Springer, Cham. https://doi.org/10.1007/978-3-031-45676-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45676-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45675-6

  • Online ISBN: 978-3-031-45676-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics