Skip to main content

Modeling Life-Span Brain Age from Large-Scale Dataset Based on Multi-level Information Fusion

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2023)

Abstract

Predicted brain age could be used to measure individual brain status over development and degeneration, which could also indicate the potential risk of age-related brain disorders. Although various techniques for the estimation of brain age have been developed, most approaches only cover a small age range, either young or elderly period, leading to limited applications. In this work, we propose a novel approach to build a brain age prediction model on a lifespan dataset with T1-weighted magnetic resonance imaging (MRI) scans. First, we utilize different neural networks to extract features from 1) an original 3D MRI scan associated with the brain maturing and aging process, 2) three (axial, coronal, and sagittal) 2D slices selected based on prior knowledge to provide possible white matter hypointensity information, and 3) volume ratios of different brain regions related to maturing and aging. Then, these extracted features of multiple levels are fused by the transformer-based cross-attention mechanism to predict the brain age. Our experiments are conducted on a total of 5376 subjects aged from 6 to 96 years from 8 cohorts. In particular, our model is built on 3372 healthy subjects and applied to 2004 subjects with brain disorders. Experimental results show that our method achieves a mean absolute error (MAE) of 2.72 years between estimated brain age and chronological age. Furthermore, when applying our model to age-related brain disorders, it turns out that both cerebral small vessel disease (SVD) and Alzheimer’s disease (AD) groups demonstrate accelerated brain aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scheltens, P., Blennow, K., Breteler, M.M.B., de Strooper, B., Frisoni, G.B., Salloway, S., Van der Flier, W.M.: Alzheimer’s disease. The Lancet 388(10043), 505–517 (2016)

    Article  Google Scholar 

  2. Rundek, T., Tolea, M., Ariko, T., Fagerli, E.A., Camargo, C.J.: Vascular cognitive impairment (VCI). Neurotherapeutics 19(1), 68–88 (2022)

    Article  Google Scholar 

  3. Franke, K., Ziegler, G., Klöppel, S., Gaser, C.: Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters. Neuroimage 50(3), 883–892 (2010)

    Article  Google Scholar 

  4. Kaufmann, T., et al.: Common brain disorders are associated with heritable patterns of apparent aging of the brain. Nat. Neurosci. 22(10), 1617–1623 (2019)

    Article  Google Scholar 

  5. Popescu, S.G., Glocker, B., Sharp, D.J., Cole, J.H.: Local brain-age: a U-net model. Front. Aging Neurosci. 13, 761954 (2021)

    Article  Google Scholar 

  6. Cole, J.H., Franke, K.: Predicting age using neuroimaging: innovative brain ageing biomarkers. Trends Neurosci. 40(12), 681–690 (2017)

    Article  Google Scholar 

  7. Franke, K., Gaser, C.: Longitudinal changes in individual BrainAGE in healthy aging, mild cognitive impairment, and Alzheimer’s Disease. GeroPsych. 25(4), 235–245 (2012)

    Article  Google Scholar 

  8. Jégou, S.: How to Estimate the Age of Your Brain with MRI Data. https://medium.com/thelaunchpad/how-to-estimate-the-age-of-your-brain-with-mri-data-c60df60da95d (2019), (Accessed 9 July 2023)

  9. Wei, K., et al.: White matter hypointensities and hyperintensities have equivalent correlations with age and CSF \(\beta \)-amyloid in the nondemented elderly. Brain Behav. 9(12), e01457 (2019)

    Article  Google Scholar 

  10. Bethlehem, R.A., et al.: Brain charts for the human lifespan. Nature 604(7906), 525–533 (2022)

    Google Scholar 

  11. Cole, J.H., et al.: Brain age predicts mortality. Mol. Psychiatry 23(5), 1385–1392 (2018)

    Article  Google Scholar 

  12. Cole, J.H., et al.: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. Neuroimage 163, 115–124 (2017)

    Article  Google Scholar 

  13. He, S., Grant, P.E., Ou, Y.: Global-local transformer for brain age estimation. IEEE Trans. Med. Imaging 41(1), 213–224 (2022)

    Article  Google Scholar 

  14. Peng, H., Gong, W., Beckmann, C.F., Vedaldi, A., Smith, S.M.: Accurate brain age prediction with lightweight deep neural networks. Med. Image Anal. 68, 101871 (2021)

    Article  Google Scholar 

  15. Baecker, L., et al.: Brain age prediction: a comparison between machine learning models using region- and voxel-based morphometric data. Hum. Brain Mapp. 42(8), 2332–2346 (2021)

    Article  Google Scholar 

  16. de Lange, A.M.G., et al.: Multimodal brain-age prediction and cardiovascular risk: the Whitehall II MRI sub-study. Neuroimage 222, 117292 (2020)

    Article  Google Scholar 

  17. Zhu, J.D., et al.: Investigating brain aging trajectory deviations in different brain regions of individuals with schizophrenia using multimodal magnetic resonance imaging and brain-age prediction: a multicenter study. Transl. Psychiatry 13(1), 82 (2023)

    Article  Google Scholar 

  18. Liem, F., et al.: Predicting brain-age from multimodal imaging data captures cognitive impairment. Neuroimage 148, 179–188 (2017)

    Article  Google Scholar 

  19. Mouches, P., Wilms, M., Rajashekar, D., Langner, S., Forkert, N.D.: Multimodal biological brain age prediction using magnetic resonance imaging and angiography with the identification of predictive regions. Hum. Brain Mapp. 43(8), 2554–2566 (2022)

    Article  Google Scholar 

  20. Cai, H., Gao, Y., Liu, M.: Graph transformer geometric learning of brain networks using multimodal MR images for brain age estimation. IEEE Trans. Med. Imaging 42(2), 456–466 (2023)

    Article  Google Scholar 

  21. Ballester, P.L., et al.: Predicting brain age at slice level: convolutional neural networks and consequences for interpretability. Front. Psychiat. 12 (2021)

    Google Scholar 

  22. Hwang, I., et al.: Prediction of brain age from routine T2-weighted spin-echo brain magnetic resonance images with a deep convolutional neural network. Neurobiol. Aging 105, 78–85 (2021)

    Article  Google Scholar 

  23. Gupta, U., Lam, P.K., Steeg, G.V., Thompson, P.M.: Improved brain age estimation with slice-based set networks. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 840–844 (2021)

    Google Scholar 

  24. Armanious, K., et al.: Age-Net: an MRI-based iterative framework for brain biological age estimation. IEEE Trans. Med. Imaging 40(7), 1778–1791 (2021)

    Article  Google Scholar 

  25. Huang, T.W., et al.: Age estimation from brain MRI images using deep learning. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 849–852 (2017)

    Google Scholar 

  26. Han, M., et al.: Segmentation of CT Thoracic Organs by Multi-resolution VB-nets. In: SegTHOR@ ISBI (2019)

    Google Scholar 

  27. Di Martino, A., et al.: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19(6), 659–667 (2014)

    Article  Google Scholar 

  28. Milham, M., et al.: The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience. Front. Syst. Neurosci. 6 (2012)

    Google Scholar 

  29. LaMontagne, P.J., et al.: OASIS-3: Longitudinal Neuroimaging, Clinical, and Cognitive Dataset for Normal Aging and Alzheimer Disease. medRxiv (2019)

    Google Scholar 

  30. Zuo, X.N., et al.: An open science resource for establishing reliability and reproducibility in functional connectomics. Sci. Data 1(1), 1–13 (2014)

    Article  Google Scholar 

  31. Cole, N.J., et al.: N4ITK: improved N3 Bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010)

    Article  Google Scholar 

  32. Jenkinson, M., Bannister, P., Brady, M., Smith, S.: Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2), 825–841 (2002)

    Article  Google Scholar 

  33. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  34. Shi, Y., et al.: Potential of brain age in identifying early cognitive impairment in subcortical small-vessel disease patients. Front. Aging Neurosci. 14 (2022)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Natural Science Foundation of China (62131015), Science and Technology Commission of Shanghai Municipality (STCSM) (21010502600), Key R&D Program of Guangdong Province, China (2021B0101420006), STI2030-Major Projects (2022ZD0213100), The China Postdoctoral Science Foundation (Nos. BX2021333, 2021M703340), and National Key Research and Development Program of China (2022YFE0205700). Data collection and sharing for this project was funded by Shanghai Zhangjiang National Innovation Demonstration Zone Special Funds for Major Projects (ZJ2018-ZD-012), Shanghai Pilot Program for Basic Research (JCYJ-SHFY-2022-014), and Shanghai Pujiang Program (21PJ1421400).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Shi or Dinggang Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, N. et al. (2024). Modeling Life-Span Brain Age from Large-Scale Dataset Based on Multi-level Information Fusion. In: Cao, X., Xu, X., Rekik, I., Cui, Z., Ouyang, X. (eds) Machine Learning in Medical Imaging. MLMI 2023. Lecture Notes in Computer Science, vol 14349. Springer, Cham. https://doi.org/10.1007/978-3-031-45676-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45676-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45675-6

  • Online ISBN: 978-3-031-45676-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics