Skip to main content

The Electrodermal Activity of Player Experience in Virtual Reality Games: An Extended Evaluation of the Phasic Component

  • Conference paper
  • First Online:
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2022)

Abstract

Thanks to its effectiveness, electrodermal activity (EDA) has been previously included as an evaluation metric, within analyses of user experience. In this study, the phasic component of participants’ EDA data is examined in relation to their reported experiences when playing a set of virtual reality games, that featured the HTC Vive and Leap Motion controllers for input. Two models are used in the analysis of the phasic component: a deconvolution model and a convex optimization model. Despite having significant differences in their player experiences, results indicate that there are not many significant differences in the phasic component data. Even if some weak correlations were found, the majority of results show no linear correlations between the phasic component data and the reported experience variables. This shows that the phasic component of EDA data should be further investigated in conjunction with other psychophysiological signals because it has only recently demonstrated a weak link with player experience.

This work has been funded partly by the Knowledge Foundation, Sweden, through the ViaTecH-Synergy project (contract 20170056), and the Human-Centered Intelligent Realities (HINTS) Profile project (contract 20220068).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ang, D.: Difficulty in video games: understanding the effects of dynamic difficulty adjustment in video games on player experience. In: Proceedings of the 2017 ACM SIGCHI Conference on Creativity and Cognition - C &C 2017, Singapore, Singapore, pp. 544–550. ACM Press (2017). https://doi.org/10.1145/3059454.3078706. http://dl.acm.org/citation.cfm?doid=3059454.3078706

  2. Benedek, M., Kaernbach, C.: A continuous measure of phasic electrodermal activity. J. Neurosci. Methods 190(1), 80–91 (2010). https://doi.org/10.1016/j.jneumeth.2010.04.028. https://linkinghub.elsevier.com/retrieve/pii/S0165027010002335

  3. Bontchev, B.: Adaptation in affective video games: a literature review. Cybern. Inf. Technol. 16(3) (2016). https://doi.org/10.1515/cait-2016-0032. https://www.degruyter.com/view/j/cait.2016.16.issue-3/cait-2016-0032/cait-2016-0032.xml

  4. Boucsein, W.: Electrodermal Activity. Springer, Boston (2012). https://doi.org/10.1007/978-1-4614-1126-0

    Book  Google Scholar 

  5. Buchwald, M., Kupinski, S., Bykowski, A., Marcinkowska, J., Ratajczyk, D., Jukiewicz, M.: Electrodermal activity as a measure of cognitive load: a methodological approach. In: 2019 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, Poland, pp. 175–179. IEEE (2019). https://doi.org/10.23919/SPA.2019.8936745. https://ieeexplore.ieee.org/document/8936745/

  6. Drachen, A., Nacke, L.E., Yannakakis, G., Pedersen, A.L.: Correlation between heart rate, electrodermal activity and player experience in first-person shooter games. In: Proceedings of the 5th ACM SIGGRAPH Symposium on Video Games - Sandbox 2010, Los Angeles, California, pp. 49–54. ACM Press (2010). https://doi.org/10.1145/1836135.1836143. http://portal.acm.org/citation.cfm?doid=1836135.1836143

  7. Egan, D., Brennan, S., Barrett, J., Qiao, Y., Timmerer, C., Murray, N.: An evaluation of heart rate and ElectroDermal activity as an objective QoE evaluation method for immersive virtual reality environments. In: 2016 Eighth International Conference on Quality of Multimedia Experience (QoMEX), Lisbon, Portugal, pp. 1–6. IEEE (2016). https://doi.org/10.1109/QoMEX.2016.7498964. http://ieeexplore.ieee.org/document/7498964/

  8. Fowles, D.C., Christie, M.J., Edelberg, R., GRINGS, W.W., Lykken, D.T., Venables, P.H.: Publication recommendations for electrodermal measurements. Psychophysiology 18(3), 232–239 (1981). https://doi.org/10.1111/j.1469-8986.1981.tb03024.x. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8986.1981.tb03024.x

  9. Greco, A., Valenza, G., Lanata, A., Scilingo, E.P., Citi, L.: cvxEDA: a convex optimization approach to electrodermal activity processing. IEEE Trans. Biomed. Eng. 63(4), 797–804 (2016). https://doi.org/10.1109/TBME.2015.2474131

    Article  Google Scholar 

  10. Hunter, J.D.: Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9(3), 90–95 (2007). https://doi.org/10.1109/MCSE.2007.55

    Article  Google Scholar 

  11. IJsselsteijn, W., de Kort, Y., Poels, K.: The Game Experience Questionnaire. Technische Universiteit Eindhoven (2013)

    Google Scholar 

  12. Klarkowski, M., Johnson, D., Wyeth, P., Phillips, C., Smith, S.: Psychophysiology of challenge in play: EDA and self-reported arousal. In: Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, San Jose, California, USA, pp. 1930–1936. ACM (2016). https://doi.org/10.1145/2851581.2892485. https://dl.acm.org/doi/10.1145/2851581.2892485

  13. Klarkowski, M., Johnson, D., Wyeth, P., Phillips, C., Smith, S.: Don’t sweat the small stuff: the effect of challenge-skill manipulation on electrodermal activity. In: Proceedings of the 2018 Annual Symposium on Computer-Human Interaction in Play, Melbourne, VIC, Australia, pp. 231–242. ACM (2018). https://doi.org/10.1145/3242671.3242714. https://dl.acm.org/doi/10.1145/3242671.3242714

  14. Makowski, D., et al.: Neurokit2: a python toolbox for neurophysiological signal processing. Behav. Res. Methods (2021). https://doi.org/10.3758/s13428-020-01516-y

  15. Martey, R.M., et al.: Measuring game engagement: multiple methods and construct complexity. Simul. Gaming 45(4–5), 528–547 (2014). https://doi.org/10.1177/1046878114553575. http://journals.sagepub.com/doi/10.1177/1046878114553575

  16. McKinney, W.: Data structures for statistical computing in python. In: Stéfan van der Walt, Jarrod Millman (eds.) Proceedings of the 9th Python in Science Conference, pp. 56–61 (2010). https://doi.org/10.25080/Majora-92bf1922-00a

  17. Moghimi, M., Stone, R., Rotshtein, P.: Affective recognition in dynamic and interactive virtual environments. IEEE Trans. Affect. Comput. 11(1), 45–62 (2017). https://doi.org/10.1109/TAFFC.2017.2764896. http://ieeexplore.ieee.org/document/8078217/

  18. Nacke, L.E., Grimshaw, M.N., Lindley, C.A.: More than a feeling: measurement of sonic user experience and psychophysiology in a first-person shooter game. Interact. Comput. 22(5), 336–343 (2010). https://doi.org/10.1016/j.intcom.2010.04.005. https://academic.oup.com/iwc/article-lookup/doi/10.1016/j.intcom.2010.04.005

  19. Navarro, D., Garro, V., Sundstedt, V.: Electrodermal activity evaluation of player experience in virtual reality games: a phasic component analysis. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, pp. 108–116. SCITEPRESS - Science and Technology Publications (2022). https://doi.org/10.5220/0011006100003124. https://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/00110061000-03124

  20. Navarro, D., Sundstedt, V.: Evaluating player performance and experience in virtual reality game interactions using the HTC Vive controller and leap motion sensor. In: Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - HUCAPP, pp. 103–110. INSTICC, SciTePress (2019). https://doi.org/10.5220/0007362401030110

  21. Navarro, D., Sundstedt, V., Garro, V.: Biofeedback methods in entertainment video games: a review of physiological interaction techniques. Proc. ACM Hum.-Comput. Interact. 5(CHI PLAY), 1–32 (2021). https://doi.org/10.1145/3474695. https://dl.acm.org/doi/10.1145/3474695

  22. Posada-Quintero, H.F., Chon, K.H.: Innovations in electrodermal activity data collection and signal processing: a systematic review. Sensors 20(2) (2020). https://doi.org/10.3390/s20020479. https://www.mdpi.com/1424-8220/20/2/479

  23. Ravaja, N., Saari, T., Salminen, M., Laarni, J., Kallinen, K.: Phasic emotional reactions to video game events: a psychophysiological investigation. Media Psychol. 8(4), 343–367 (2006). https://doi.org/10.1207/s1532785xmep0804_2. http://www.tandfonline.com/doi/abs/10.1207/s1532785xmep0804_2

  24. Selesnick, I., Burrus, C.: Generalized digital butterworth filter design. IEEE Trans. Signal Process. 46(6), 1688–1694 (1998). https://doi.org/10.1109/78.678493

    Article  Google Scholar 

  25. Shevlyakov, G.L., Oja, H.: Robust Correlation: Theory and Applications. Wiley Series in Probability and Statistics. Wiley, Chichester (2016)

    Google Scholar 

  26. Stern, R.M., Ray, W.J., Quigley, K.S.: Psychophysiological Recording. Oxford University Press, Oxford (2000). https://doi.org/10.1093/acprof:oso/9780195113594.001.0001

  27. Tasooji, R., Buckingham, N., Gračanin, D., Knapp, R.B.: An approach to analysis of physiological responses to stimulus. In: Marcus, A., Wang, W. (eds.) HCII 2019. LNCS, vol. 11583, pp. 492–509. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23570-3_37

    Chapter  Google Scholar 

  28. Virtanen, P., et al.: SciPy 1.0: fundamental algorithms for scientific computing in python. Nat. Methods 17, 261–272 (2020). https://doi.org/10.1038/s41592-019-0686-2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Navarro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Navarro, D., Garro, V., Sundstedt, V. (2023). The Electrodermal Activity of Player Experience in Virtual Reality Games: An Extended Evaluation of the Phasic Component. In: de Sousa, A.A., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2022. Communications in Computer and Information Science, vol 1815. Springer, Cham. https://doi.org/10.1007/978-3-031-45725-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45725-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45724-1

  • Online ISBN: 978-3-031-45725-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics