Skip to main content

Active Learning with Data Augmentation Under Small vs Large Dataset Regimes for Semantic-KITTI Dataset

  • Conference paper
  • First Online:
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2022)

Abstract

Active Learning (AL) has remained relatively unexplored for LiDAR perception tasks in autonomous driving datasets. In this study we evaluate Bayesian active learning methods applied to the task of dataset distillation or core subset selection (subset with near equivalent performance as full dataset). We also study the effect of application of data augmentation (DA) within Bayesian AL based dataset distillation. We perform these experiments on the full Semantic-KITTI dataset. We extend our study over our existing work [14] only on 1/4th of the same dataset. Addition of DA and BALD have a negative impact over the labeling efficiency and thus the capacity to distill datasets. We demonstrate key issues in designing a functional AL framework and finally conclude with a review of challenges in real world active learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aghdam, H.H., Gonzalez-Garcia, A., van de Weijer, J., López, A.M.: Active learning for deep detection neural networks (2019). https://doi.org/10.48550/ARXIV.1911.09168, https://arxiv.org/abs/1911.09168

  2. Almin, A., Lemarié, L., Duong, A., Kiran, B.R.: Navya3dseg - Navya 3d semantic segmentation dataset; split generation for autonomous vehicles (2023). https://doi.org/10.48550/ARXIV.2302.08292, https://arxiv.org/abs/2302.08292

  3. Anselmi, F., Rosasco, L., Poggio, T.: On invariance and selectivity in representation learning. Inf. Inference J. IMA 5(2), 134–158 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Ash, J.T., Zhang, C., Krishnamurthy, A., Langford, J., Agarwal, A.: Deep batch active learning by diverse, uncertain gradient lower bounds (2020)

    Google Scholar 

  5. Atighehchian, P., Branchaud-Charron, F., Freyberg, J., Pardinas, R., Schell, L.: Baal, a Bayesian active learning library (2019). https://github.com/ElementAI/baal/

  6. Atighehchian, P., Branchaud-Charron, F., Lacoste, A.: Bayesian active learning for production, a systematic study and a reusable library (2020)

    Google Scholar 

  7. Beck, N., Sivasubramanian, D., Dani, A., Ramakrishnan, G., Iyer, R.: Effective evaluation of deep active learning on image classification tasks (2021)

    Google Scholar 

  8. Behley, J., et al.: Semantickitti: a dataset for semantic scene understanding of lidar sequences (2019)

    Google Scholar 

  9. Bengar, J.Z., et al.: Temporal coherence for active learning in videos (2019). https://doi.org/10.48550/ARXIV.1908.11757, https://arxiv.org/abs/1908.11757

  10. Caesar, H., et al.: nuscenes: A multimodal dataset for autonomous driving (2020)

    Google Scholar 

  11. Chitta, K., Alvarez, J.M., Haussmann, E., Farabet, C.: Training data subset search with ensemble active learning. arXiv preprint arXiv:1905.12737 (2019)

  12. Cortinhal, T., Tzelepis, G., Aksoy, E.E.: Salsanext: fast, uncertainty-aware semantic segmentation of lidar point clouds for autonomous driving (2020). https://doi.org/10.48550/ARXIV.2003.03653, https://arxiv.org/abs/2003.03653

  13. Czarnecki, K.: Operational design domain for automated driving systems. Waterloo Intelligent Systems Engineering (WISE) Lab, University of Waterloo, Canada, Taxonomy of Basic Terms (2018)

    Google Scholar 

  14. Duong., A., Almin., A., Lemarié., L., Kiran., B.: Lidar dataset distillation within bayesian active learning framework understanding the effect of data augmentation. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 159–167. INSTICC, SciTePress (2022). https://doi.org/10.5220/0010860800003124

  15. Fawzi, A., Samulowitz, H., Turaga, D., Frossard, P.: Adaptive data augmentation for image classification. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 3688–3692 (2016). https://doi.org/10.1109/ICIP.2016.7533048

  16. Feng, D., Wei, X., Rosenbaum, L., Maki, A., Dietmayer, K.: Deep active learning for efficient training of a lidar 3d object detector. In: 2019 IEEE Intelligent Vehicles Symposium (IV), pp. 667–674. IEEE (2019)

    Google Scholar 

  17. Gao, M., Zhang, Z., Yu, G., Arık, S.Ö., Davis, L.S., Pfister, T.: Consistency-based semi-supervised active learning: towards minimizing labeling cost. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 510–526. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58607-2_30

    Chapter  Google Scholar 

  18. Haussmann, E., et al.: Scalable active learning for object detection. In: 2020 IEEE Intelligent Vehicles Symposium (IV), pp. 1430–1435. IEEE (2020)

    Google Scholar 

  19. Houlsby, N., Huszár, F., Ghahramani, Z., Lengyel, M.: Bayesian active learning for classification and preference learning (2011)

    Google Scholar 

  20. Hu, Z., et al.: LiDAL: inter-frame uncertainty based active learning for 3D LiDAR semantic segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision. ECCV 2022. LNCS, vol. 13687, pp. 248–265. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19812-0_15

  21. Kirsch, A., van Amersfoort, J., Gal, Y.: BatchBald: efficient and diverse batch acquisition for deep Bayesian active learning (2019)

    Google Scholar 

  22. Liu, M., Zhou, Y., Qi, C.R., Gong, B., Su, H., Anguelov, D.: Less: label-efficient semantic segmentation for lidar point clouds. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision. ECCV 2022. LNCS, vol. 13699, pp. 70–89. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19842-7_5

  23. van der Maaten, L., Hinton, G.: Visualizing data using T-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  24. Milioto, A., Vizzo, I., Behley, J., Stachniss, C.: Rangenet++: fast and accurate lidar semantic segmentation. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4213–4220. IEEE (2019)

    Google Scholar 

  25. Pop, R., Fulop, P.: Deep ensemble Bayesian active learning: addressing the mode collapse issue in Monte Carlo dropout via ensembles (2018). https://doi.org/10.48550/ARXIV.1811.03897, https://arxiv.org/abs/1811.03897

  26. Ren, P., et al.: A survey of deep active learning. ACM Comput. Surv. (CSUR) 54(9), 1–40 (2021)

    Article  Google Scholar 

  27. Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set approach (2018)

    Google Scholar 

  28. Uricár, M., Hurych, D., Krizek, P., Yogamani, S.: Challenges in designing datasets and validation for autonomous driving. arXiv preprint arXiv:1901.09270 (2019)

  29. Wu, B., Zhou, X., Zhao, S., Yue, X., Keutzer, K.: SqueezeSegV2: improved model structure and unsupervised domain adaptation for road-object segmentation from a lidar point cloud (2018)

    Google Scholar 

  30. Wu, T.H., et al.: ReDAL: region-based and diversity-aware active learning for point cloud semantic segmentation (2021). 10.48550/ARXIV.2107.11769, https://arxiv.org/abs/2107.11769

  31. Yuan, S., Sun, X., Kim, H., Yu, S., Tomasi, C.: Optical flow training under limited label budget via active learning (2022). https://doi.org/10.48550/ARXIV.2203.05053, https://arxiv.org/abs/2203.05053

Download references

Acknowledgements

This work was granted access to HPC resources of [TGCC/ CINES/IDRIS] under the allocation 2021- [AD011012836] made by GENCI (Grand Equipment National de Calcul Intensif). It is also part of the Deep Learning Segmentation (DLS) project financed by ADEME.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ravi Kiran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Duong, N.P.A., Almin, A., Lemarié, L., Kiran, B.R. (2023). Active Learning with Data Augmentation Under Small vs Large Dataset Regimes for Semantic-KITTI Dataset. In: de Sousa, A.A., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2022. Communications in Computer and Information Science, vol 1815. Springer, Cham. https://doi.org/10.1007/978-3-031-45725-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45725-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45724-1

  • Online ISBN: 978-3-031-45725-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics