Abstract
Active Learning (AL) has remained relatively unexplored for LiDAR perception tasks in autonomous driving datasets. In this study we evaluate Bayesian active learning methods applied to the task of dataset distillation or core subset selection (subset with near equivalent performance as full dataset). We also study the effect of application of data augmentation (DA) within Bayesian AL based dataset distillation. We perform these experiments on the full Semantic-KITTI dataset. We extend our study over our existing work [14] only on 1/4th of the same dataset. Addition of DA and BALD have a negative impact over the labeling efficiency and thus the capacity to distill datasets. We demonstrate key issues in designing a functional AL framework and finally conclude with a review of challenges in real world active learning.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aghdam, H.H., Gonzalez-Garcia, A., van de Weijer, J., López, A.M.: Active learning for deep detection neural networks (2019). https://doi.org/10.48550/ARXIV.1911.09168, https://arxiv.org/abs/1911.09168
Almin, A., Lemarié, L., Duong, A., Kiran, B.R.: Navya3dseg - Navya 3d semantic segmentation dataset; split generation for autonomous vehicles (2023). https://doi.org/10.48550/ARXIV.2302.08292, https://arxiv.org/abs/2302.08292
Anselmi, F., Rosasco, L., Poggio, T.: On invariance and selectivity in representation learning. Inf. Inference J. IMA 5(2), 134–158 (2016)
Ash, J.T., Zhang, C., Krishnamurthy, A., Langford, J., Agarwal, A.: Deep batch active learning by diverse, uncertain gradient lower bounds (2020)
Atighehchian, P., Branchaud-Charron, F., Freyberg, J., Pardinas, R., Schell, L.: Baal, a Bayesian active learning library (2019). https://github.com/ElementAI/baal/
Atighehchian, P., Branchaud-Charron, F., Lacoste, A.: Bayesian active learning for production, a systematic study and a reusable library (2020)
Beck, N., Sivasubramanian, D., Dani, A., Ramakrishnan, G., Iyer, R.: Effective evaluation of deep active learning on image classification tasks (2021)
Behley, J., et al.: Semantickitti: a dataset for semantic scene understanding of lidar sequences (2019)
Bengar, J.Z., et al.: Temporal coherence for active learning in videos (2019). https://doi.org/10.48550/ARXIV.1908.11757, https://arxiv.org/abs/1908.11757
Caesar, H., et al.: nuscenes: A multimodal dataset for autonomous driving (2020)
Chitta, K., Alvarez, J.M., Haussmann, E., Farabet, C.: Training data subset search with ensemble active learning. arXiv preprint arXiv:1905.12737 (2019)
Cortinhal, T., Tzelepis, G., Aksoy, E.E.: Salsanext: fast, uncertainty-aware semantic segmentation of lidar point clouds for autonomous driving (2020). https://doi.org/10.48550/ARXIV.2003.03653, https://arxiv.org/abs/2003.03653
Czarnecki, K.: Operational design domain for automated driving systems. Waterloo Intelligent Systems Engineering (WISE) Lab, University of Waterloo, Canada, Taxonomy of Basic Terms (2018)
Duong., A., Almin., A., Lemarié., L., Kiran., B.: Lidar dataset distillation within bayesian active learning framework understanding the effect of data augmentation. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 159–167. INSTICC, SciTePress (2022). https://doi.org/10.5220/0010860800003124
Fawzi, A., Samulowitz, H., Turaga, D., Frossard, P.: Adaptive data augmentation for image classification. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 3688–3692 (2016). https://doi.org/10.1109/ICIP.2016.7533048
Feng, D., Wei, X., Rosenbaum, L., Maki, A., Dietmayer, K.: Deep active learning for efficient training of a lidar 3d object detector. In: 2019 IEEE Intelligent Vehicles Symposium (IV), pp. 667–674. IEEE (2019)
Gao, M., Zhang, Z., Yu, G., Arık, S.Ö., Davis, L.S., Pfister, T.: Consistency-based semi-supervised active learning: towards minimizing labeling cost. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 510–526. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58607-2_30
Haussmann, E., et al.: Scalable active learning for object detection. In: 2020 IEEE Intelligent Vehicles Symposium (IV), pp. 1430–1435. IEEE (2020)
Houlsby, N., Huszár, F., Ghahramani, Z., Lengyel, M.: Bayesian active learning for classification and preference learning (2011)
Hu, Z., et al.: LiDAL: inter-frame uncertainty based active learning for 3D LiDAR semantic segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision. ECCV 2022. LNCS, vol. 13687, pp. 248–265. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19812-0_15
Kirsch, A., van Amersfoort, J., Gal, Y.: BatchBald: efficient and diverse batch acquisition for deep Bayesian active learning (2019)
Liu, M., Zhou, Y., Qi, C.R., Gong, B., Su, H., Anguelov, D.: Less: label-efficient semantic segmentation for lidar point clouds. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision. ECCV 2022. LNCS, vol. 13699, pp. 70–89. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19842-7_5
van der Maaten, L., Hinton, G.: Visualizing data using T-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)
Milioto, A., Vizzo, I., Behley, J., Stachniss, C.: Rangenet++: fast and accurate lidar semantic segmentation. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4213–4220. IEEE (2019)
Pop, R., Fulop, P.: Deep ensemble Bayesian active learning: addressing the mode collapse issue in Monte Carlo dropout via ensembles (2018). https://doi.org/10.48550/ARXIV.1811.03897, https://arxiv.org/abs/1811.03897
Ren, P., et al.: A survey of deep active learning. ACM Comput. Surv. (CSUR) 54(9), 1–40 (2021)
Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set approach (2018)
Uricár, M., Hurych, D., Krizek, P., Yogamani, S.: Challenges in designing datasets and validation for autonomous driving. arXiv preprint arXiv:1901.09270 (2019)
Wu, B., Zhou, X., Zhao, S., Yue, X., Keutzer, K.: SqueezeSegV2: improved model structure and unsupervised domain adaptation for road-object segmentation from a lidar point cloud (2018)
Wu, T.H., et al.: ReDAL: region-based and diversity-aware active learning for point cloud semantic segmentation (2021). 10.48550/ARXIV.2107.11769, https://arxiv.org/abs/2107.11769
Yuan, S., Sun, X., Kim, H., Yu, S., Tomasi, C.: Optical flow training under limited label budget via active learning (2022). https://doi.org/10.48550/ARXIV.2203.05053, https://arxiv.org/abs/2203.05053
Acknowledgements
This work was granted access to HPC resources of [TGCC/ CINES/IDRIS] under the allocation 2021- [AD011012836] made by GENCI (Grand Equipment National de Calcul Intensif). It is also part of the Deep Learning Segmentation (DLS) project financed by ADEME.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Duong, N.P.A., Almin, A., Lemarié, L., Kiran, B.R. (2023). Active Learning with Data Augmentation Under Small vs Large Dataset Regimes for Semantic-KITTI Dataset. In: de Sousa, A.A., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2022. Communications in Computer and Information Science, vol 1815. Springer, Cham. https://doi.org/10.1007/978-3-031-45725-8_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-45725-8_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-45724-1
Online ISBN: 978-3-031-45725-8
eBook Packages: Computer ScienceComputer Science (R0)